УДК 539.21:537.1

Spectral dimensions and free volume in As_xS_{1-x} glasses

N.Mateleshko, M.Veres, V.Mitsa, T.Melnichenko, I.Rosola

Uzhgorod State University, Department of Solid State Electronics, 32 Voloshin str., 294000 Uzhgorod, Ukraine e-mail: mitsa@univ.uzhgorod.ua

A low-frequency (LF) Raman spectra of As_2S_3 glasses, prepared at different temperatures of melts (T_i) and different rates of cooling (Vj) and Raman spectra of binary glasses As_XS_{1-X} , prepared at optimal conditions are given. A relation between reduced intensity of LF maxims and slope of high-frequency part of LF spectra of As_2S_3 glasses on temperature of melt and rate of cooling are revealed. In framework of fractal approximation a spectral dimension (d_f) was calculated. It is sensitive to the conditions of preparing of As_2S_3 glasses. A spectral dimension of fractals was determined by independent way from concentration dependence of ultrasound velocity of As_XS_{1-X} glasses. A dependence of intensity of density of states and free volume on average coordination number of As_XS_{1-X} glasses are revealed.

Key words: Raman spectra, temperature, glasses, concentration.

Paper receiced 28.04.2000; accepted for publication 26.05.2000.

Low-frequency (LF) Raman scattering spectroscopy is an efficient method for the investigation of structural properties of noncrystalline solids. There is especially a great interest in the analysis of Raman spectra where middle range order is manifested through frequency position of boson peak. The frequency dependence of the light as a function of vibration coupling coefficient $C(\omega) \sim \omega$ in the region of boson peak (ω_B) mainly in stoichiometric glasses is known by comparing the Raman scattering with the neutron ones and specific heat data [1-5].

In [6] the model that connects a linear low of coefficient $C(\omega)$ with the vibration correlation function was proposed. The similar relation for describing the correlation in fractal structures was used [7]. For the latter the correlation length ξ and spectral dimension d_f of fractals are included in equation. One of the methods for determining d_f of non-crystalline materials in the fracton approximation is LF Raman

simple spectroscopy The [7]. second independent way to determine d_f is calculations carried out with the relation between sound velocity v_s and density ρ [7]. In accordance with the constrain counting model and its subsequent modification, the change in mechanical properties with the composition (average coordination number z) reflects structural compactness of glasses [9,10]. The relation connecting microhardness H, softening temperature T_g , density ρ and free volume V_h of binary glasses are given in [11]. The aim of these notes is to determine d_f for glassy g-As₂S₃ by different methods and to determine d_f , V_h in As_vS_{1-v} when varying the composition (or z).

When preparing glassy (g) g-As₂S₃ different temperature of melt (T_{mi}), T_{m1}=870 K and cooling rate V_j (V₁=10⁻², V₂=1,5, V₃=1,5x10² K/s) were used. The non stoichiometric glasses As_xS_{1-x} (x≠0.4) for investigations were prepared from melt (T_m=870 K) with cooling rate V₂=1,5 K/s. Ultrasound velocity v_s was measured by echo-method.

At first we shall consider the influence of temperature-time conditions of preparing g-As₂S₃ on LF Raman spectra. As we can see from reduced Raman spectrum, $I_R = I/(n(\omega)+1)$ (Fig.1), at constant rate of cooling (V₁=10⁻² K/c), the intensities I_R of maxim near ω_B increase with the temperature varied from T₁=870 K up to T₃=1370 K, and maximum shift in depolarized Raman spectra from $\omega_B(T_1V_1)=26$ up to $\omega_B(T_1V_3)=22$ cm⁻¹.

Fig.1. Reduced Raman spectra of As_2S_3 prepared at different conditions T_iV_1 (T_1 =870, T_2 =1120, T_3 =1370 K, V_1 =10⁻¹ K/s).

The reduced Raman spectrum I_R is proportional to density of states $g(\omega)$ [7]:

 $I/(n(\omega)+1)=C(\omega)g(\omega)/\omega$ (1) As it was mentioned above $C(\omega)\sim\omega$ [6] and $I_R=\rho(\omega)$ are obtained from (1). Therefore within the framework of this approximation the increase in I_R and the shift of low-frequency maximum ω_B ($T_{mi}V_1$) reflects the change in function $\rho(\omega)$ with increasing T_{mi} (i=1-3).

In fig.2 Raman spectra of g-As₂S₃, which were prepared at cooling from T_1 =870 K with various rate of cooling V_j (j=1-3), are given. The minimum of intensity and the highestfrequency maximum $\omega_{max}(T_{m1}V_2)$ =27 cm⁻¹ correspond to $T_{m1}V_2$ conditions of preparing. According to direct electron-microscopic researches of glass plates, these conditions of preparing g-As₂S₃ provide the most homogeneous structure of a glass [12].

Within the framework of fractal approximation the dependence I_R for the frequency region $\omega_{max} < \omega < 60 \ \text{cm}^{-1}$ may be extrapolate by function $I_R \sim \omega^p$, where

Fig.2. Reduced Raman spectra of As_2S_3 prepared at different conditions T_1V_j ($T_1=870K$, $V_1=10^{-2}$, $V_2=1.5$, $V_3=1.5x10^2$ K/s).

 $p=-2[(d_f/D)(D-d-\sigma)+1/2]$ (2) Taking into account that fracton dimension D=2.5, the scaling factor $\sigma=1.1$ and the dimension of Euclidean space d = 3 [7, 8], the values of d_f were estimated. The calculations have shown that received experimental values d_f are a little bit higher than that of d_f = 4/3 calculated for percolating systems.

In the fracton approximation [7] the reduced LF Raman spectrum d_f is connected with density of states by relation $g \sim \omega^{d_{-1}}$ and

$$C(\omega) \sim \omega_{f}^{2d/D}$$
(3)

Therefore the changes in intensity and position of a maximum $g(\omega)$ can be logically

Fig. 3. Dependence of ultrasound velocity v_s on average coordination number.

connected with the changes of spectral dimension d_f (see Table). Substituting calculated values of d_f into (3) we shall obtain C=1.4-1.6 for the frequency region $\omega_{max} < \omega < 60$

Table

Conditions and in glasses As-5 system			
Composition / T_iV_j As ₂ S ₃ ($T_{1m}V_1$)	d _f from Raman spectra	d _f " from sound velocity	V _h , Å ³
$As_2S_3(T_{m2},V_1)$	1.85	-	-
$As_2S_3(T_{m3}V_1)$	1.76	1.55	-
$As_2S_3(T_{m1}V_2)$	1.65	-	19,7
$As_2S_3(T_{m1}V_3)$	1.78	-	-
$As_{29,6}S_{70,4}(T_{m2}V_1)$	1.93	1,75	39,3
$As_{26,1}S_{73,9}(T_{m2}V_1)$	2,14	1,77	54,1

Calculations of spectral dimensions d_f and free volume V_h in g-As₂S₃ prepared under different conditions and in glasses As-S system

cm⁻¹. These values are a little bit higher than those ones obtained for other glasses by the neutron spectroscopy method [3]. Therefore to determine d_f by independent way we shall use the data of measurements of ultrasound velocity (Fig.3) for glasses of As-S system.

Within the framework of fractal approximation [7] the spectral dimension connects ultrasound velocity and density of states by relation

$$v_s \sim \rho_{f}^{(D/d - 1)/(d - D)}$$
 (4)

The measured values of longitudinal sound velocity are presented depending on the average coordination number z=3y+2(1-y) (Fig. 3) calculated for As-S binary glasses by relation based on Mott rule of 8-N valence chemical bond [14]. It is easy to approximate part of curve V=V(z) (Fig. 3) at z=2,1-2,4 by three linear intervals 2,1<z<2,2, 2,2≤z<2,3 and $2,3 \le z \le 2,4$. Based on ratio (4) for these intervals the following values of d_f were obtained: $d_f(z_1)=1,77, d_f(z_2)=1,75$ and $d_f(z_3)=1,55$ (see Table 1). Substituting the results of an estimation $d_f(z_3)=1.55$ for g-As₂S₃ from velocity into (4), we obtain ultrasound $C(\omega) \approx 1.03$ that coincides with the data of theoretical and experimental investigations [6, 13]. For nonstoichiometric glasses As_xS_{1-x} the give the greater values estimations of $C(\omega)=1,18.$

In fig. 4 the reduced Raman spectra of some glasses of As-S system from the three mentioned regions are given. We found compositional (an average coordination number z) dependencies of I_R for As_xS_{1-x} glasses. The minimum of intensity and maximum of frequency shift in depolarized spectra at $\omega_B=26$

cm⁻¹ correspond to stoichiometric g-As₂S₃ whose constrain matrix structure is formed by AsS_{3/2} trigonal structural elements. The frequency minimum ω_B =18 cm⁻¹ and maximum I_R are observed for g-As₁₀S₉₀. The rigidity percolates when the number of constraints per atom exceeds the number of degrees of freedom per atom [9,10]. For a three-dimensional structure the threshold is at average coordination number 2.4. For less content of As concentration the dominant S-S bonds have additional degrees of freedom (floppy modes) that results in the growth of I_R [9].

Fig. 4. The density of states divided by the frequency, $g(\omega)/\omega$, for various values of the average coordination of As_xS_{1-x} glassess.

Within the fracton approximation we found values d_f for the region of a spectrum $\omega_{max} < \omega < 60 \text{ cm}^{-1}$. The values of d_f calculated from LF spectra are a little bit higher than those ones calculated from the measurements of ultrasound velocity (see Table 1).

- A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick and A. Wischnewski, Comparison of Raman- and neutron-scattering data for glass-forming systems // *Phys. Rev.*, B 52, pp. R9815-R9818 (1995).
- [2] I. Pócsik and M. Koós. Cluster size determination in amorphous structures using the boson peak // Sol. St. Comm., 74(12), pp. 1253-1256 (1990).
- [3] A. P. Sokolov, A. Kisliuk, D. Quitman and E. Duval. Evaluation of density of vibrational states of glasses from low-frequency Raman spectra // *Phys. Rev.*, **B 48**, pp. 7692-7695 (1993).
- [4] V. Mitsa, I. Fejsa. Raman spectra of chalcogenides implanted into pores of zeolites // J. Mol. Struc., 410-411, pp. 263-265 (1997).
- [5] F. Billes, V. Mitsa, I. Fejes, N. Mateleshko, I. Fejsa. Calculation of the vibrational spectra of arsenic sulfide clusters // J. Mol. Struc., 513, pp. 109-115 (1999).
- [6] V. N. Novikov, N. V. Surovtsev. Spatial structure of boson peak vibrations in glasses // *Phys. Rev.*, B59, pp. 38-41 (1999).
- [7] S. Alexander, E. Courtens, R. Vacher. Vibrations of fractals: dynamic scaling, correlation functions and inelastic light scattering // *Physica*, A195, pp. 286-318 (1993).
- [8] M. Ivanda, I. Hartmann, W. Kifer. Boson peak in the Raman spectra of amorphous gallium arsenide: Generalization to amorphous tetrahedral semiconductors // *Phys. Rev.*, **B51**, pp. 1567-1574 (1995).
- [9] M. F. Thorpe, V. Cay. Mechanical and vibrational properties of network structures // J. *Non-Cryst. Sol.*, **114**, pp. 19-24 (1989).
- [10] M. F. Thorpe, B. R. Djordjevic and D. J. Jacobs. The structure and mechanical properties of networks. in: Proc. Amorphous Insulators and Semiconductors, pp. 289-327, Kluwer Academic Publishers (1997).
- [11] Т. Н. Мельниченко. Жесткость сетки ковалентных связей в сложных стеклообразных полупроводниках систем А^V-В^{VI}-С^{VII} // *Неорг. Матер.*, **34(2)**, pp. 230-233 (1998).
- [12] A. Boukenter, E. Duval. Comparison of inelastic light and neutron scatterig in Se_{1-x}Ge_x glasses: structure and light-vibration coupling coefficient frequency dependence // *Phyl. Mag.*, B77, pp. 557-568 (1998).
- [13] N. F. Mott and E. A. Davis. *Electronic Processes in Non-Crystalline Materials*, Clarendon Press, Oxford (1979).

Спектральні розмірності та вільний об'єм в As_xS_{1-x} склах

Н. Мателешко, М. Верес, В. Міца, Т. Мельниченко, І. Росола

Ужгородський державний університет, кафедра твердотільної електроніки, вул. Волошина, 32, 294000 Ужгород, Україна, e-mail: mitsa@univ.uzhgorod.ua

В роботі розглянуті низькочастотні (НЧ) спектри комбінаційного розсіювання (КР) стекол As_2S_3 , одержаних загартуванням від різних температур розплаву (T_i) і з різною швидкістю (Vj) гартування та бінарних стекол As_xS_{1-x} , одержаних при оптимальних умовах. Виявлена залежність приведеної інтенсивності НЧ максимуму та нахилу високочастотної частини НЧ спектру стекол As_2S_3 від температури розплаву і швидкості його гартування. В рамках фрактального наближення розрахована спектральна розмірність (d_f) виявилася чутливою до умов одержання стекол As_2S_3 . Незалежно від оптичних вимірювань, розрахована спектральна розмірність фракталів із концентраційної залежності швидкості звуку в стеклах As_xS_{1-x} . Виявлена залежність інтенсивності густини станів і вільного об'єму в стеклах As_xS_{1-x} від середнього координаційного числа.