УДК 621.315.592

ISSN 1729-4428

О.П. Малик

Розсіяння важких дірок на близькодіючому потенціалі кристалічних дефектів в твердому розчині CdHgTe

Національний університет "Львівська політехніка", кафедра напівпровідникової електроніки, вул. С. Бандери, 12, Львів 79013; e-mail: <u>omalyk@mail.lviv.ua</u>

Запропоновано моделі розсіяння важких дірок на близькодіючому потенціалі обумовленому взаємодією з полярними та неполярними оптичними фононами, п'єзоелектричними та акустичними фононами, статичною деформацією, іонізованими та нейтральними домішками в $Cd_xHg_{1-x}Te$ (x \approx 0,21-0,62). Розраховані температурні залежності рухливості важких дірок в інтервалі 4,2-300 К.

Ключові слова: твердий розчин кадмій-ртуть-телур, розсіяння носіїв заряду.

Стаття поступила до редакції 07.02.2008; прийнята до друку 15.03.2009.

Вступ

Розсіяння важких дірок у твердому розчині Сd_xHg_{1-x}Te розглядалось в наближенні часу релаксації у роботах [1-13]. Однак, розглянуті в цих роботах моделі розсіяння мають один суттєвий недолік – вони є далекодіючими. В них припускалося, що носій взаємодіє з усім кристалом (дірково-фононна взаємодія) або носій взаємодіє з потенціалом зарядженої домішки, радіус дії якого $\sim 50-100 a_0$ (a_0 – стала гратки). Однак, таке припущення суперечить спеціальній теорії відносності, згідно якої носій взаємодіє тільки з сусідніми областями кристалу. Крім того, для

дефектів з потенціалом взаємодії $U \approx \frac{1}{r^n}$ (n = 1,2)

на відстанях ~ $10 a_0$ потенціал стає величиною другого порядку, тоді як зазначені вище моделі розглядаються в першому (борнівському) порядку. З

іншого боку, в роботі [14] розглядались близькодіючі моделі розсіяння електронів, в яких вищевказані недоліки були відсутні. При цьому припускалося, що носій взаємодіє з потенціалом дефекту тільки в межах однієї елементарної комірки. Метою теперішньої роботи є застосування цього підходу для опису процесів розсіяння важких дірок на різного типу кристалічних дефектах.

I. Теорія

Ймовірності переходу важкої дірки з стану *k* в стан *k*', викликаного взаємодією з полярним оптичним (ПО), п'єзооптичним (ПОП) та п'єзоакустичним (ПАК) фононами, нейтральними (НД) та іонізованими домішками (ІД), неполярними оптичними (НПО) та акустичними (АК) вибирались згідно роботи [14]:

$$W_{IIO}(\mathbf{k}, \mathbf{k}') = \frac{64 \pi^{7} \gamma_{PO}^{10} e^{4}}{225 \varepsilon_{0}^{2} a_{0}^{4} G} \frac{M_{x} + M_{Te}}{M_{x} M_{Te}} \left\{ \frac{1}{\omega_{LO}} \left[N_{LO} \delta(\varepsilon' - \varepsilon - \hbar \omega_{LO}) + (N_{LO} + 1) \delta(\varepsilon' - \varepsilon + \hbar \omega_{LO}) \right] + \frac{2}{\omega_{TO}} \left[N_{TO} \delta(\varepsilon' - \varepsilon - \hbar \omega_{TO}) + (N_{TO} + 1) \delta(\varepsilon' - \varepsilon + \hbar \omega_{TO}) \right] \right\};$$

$$W_{IIOII}(\mathbf{k}, \mathbf{k}') = \left(\frac{32}{75} \right)^{2} \frac{\pi^{9} e^{2} e_{14}^{2} \gamma_{PZ}^{10}}{\varepsilon_{0}^{2} G} \frac{M_{x} + M_{Te}}{M_{x} M_{Te}} \left\{ \frac{1}{\omega_{LO}} \left[N_{LO} \delta(\varepsilon' - \varepsilon - \hbar \omega_{LO}) + (N_{LO} + 1) \delta(\varepsilon' - \varepsilon + \hbar \omega_{LO}) \right] \right\};$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

Рис. 1. Температурна залежність рухливості важких дірок в кристалах Cd_xHg_{1-x}Te. Суцільна крива – змішаний механізм розсіяння; 1,2,3,4,5,6,7,8,9 – відповідно АК-, ІД-, НПО-, ПАК-, ПО-, ПОП-, НД-, НП-, СД- механізми розсіяння. Експеримент – [4,7].

$$W_{IIAK}(\mathbf{k},\mathbf{k}') = \frac{128 \pi^7 e^2 e_{14}^2 a_0^2 \gamma_{PZ}^{10} k_B T}{225 \varepsilon_0^2 \hbar G \left[M_x + M_{Te}\right]} \left(\frac{1}{c_{LO}} + \frac{2}{c_{TO}}\right)^2 \delta (\varepsilon' - \varepsilon)$$
(3)

$$W_{H\mathcal{I}}(\mathbf{k},\mathbf{k}') = \frac{100 \ \pi^2 a_B \ \hbar^4 \ N_{ND}}{\sqrt{2} \ V \ m_{hh}^{3/2} \ \left(\varepsilon - \varepsilon_g\right)^{1/2}} \ \delta \ \left(\varepsilon \ ' - \varepsilon \right)$$
(4)

$$W_{II}(\mathbf{k},\mathbf{k}') = \frac{\pi \ e^4 Z_i^2 \ N_{II} \ \gamma_{II}^4 \ a_0^4}{2 \ \varepsilon_0^2 \ \hbar \ V} \delta \ (\varepsilon' - \varepsilon) \ ; \tag{5}$$

$$W_{HHO}(\mathbf{k}, \mathbf{k}') = \frac{\pi^{3} E_{HHO}^{2}}{288 a_{0}^{2} G} \quad \frac{M_{x} + M_{Te}}{M_{x} M_{Te}} \times \left\{ \frac{1}{\omega_{LO}} \left[N_{LO} \ \delta(\varepsilon' - \varepsilon - \hbar \omega_{LO}) + (N_{LO} + 1) \times \right] \right\}$$
(6)

$$\times \delta(\varepsilon' - \varepsilon + \hbar \omega_{LO}) \Big] + \frac{2}{\omega_{TO}} \Big[N_{TO} \delta(\varepsilon' - \varepsilon - \hbar \omega_{TO}) + (N_{TO} + 1) \, \delta(\varepsilon' - \varepsilon + \hbar \omega_{TO}) \Big] \Big\} ;.$$

$$W_{AK}(\mathbf{k},\mathbf{k}') = \frac{\pi^3 k_B T E_{AK}^2}{144 \hbar G \left[M_x + M_{Te}\right]} \left(\frac{1}{c_{LO}} + \frac{2}{c_{TO}}\right)^2 \delta (\varepsilon' - \varepsilon), \tag{7}$$

де $M_x = xM_{Cd} + (1-x)M_{Hg}$, M_{Hg},M_{Cd},M_{Te} – маса атома; G – кількість елементарних комірок в об'ємі кристалу; ε_0 – діелектрична стала; е – заряд електрона; a_0 – постійна гратки; N_{LO} , N_{TO} – число

поздовжніх (LO) та поперечних (TO) фононів з частотою ω_{LO} і ω_{TO} відповідно; e_{14} – компонента п'єзоелектричного тензора; k_B – постійна Больцмана; c_{LO} , c_{TO} – відповідні швидкості звуку; a_B – радіус

Бора; $V - 66' \epsilon м$ кристалу; m_{hh} – ефективна маса важких дірок; N_{ND} , N_{II} – концентрація нейтральних та іонізованих домішок відповідно; Z_i – кратність іонізації домішки; E_{AK}, E_{HIIO} – ефективні акустичний та оптичний потенціали деформації, запроваджені в роботах [15,16]; γ_{PO} , γ_{PZ} , γ_{II} – підгоночні параметри, що визначають радіус дії близькодіючого потенціалу ($R = \gamma \ a_0, 0 \le \gamma_{PO}$, $\gamma_{PZ} \le 0.86$, $0 \le \gamma_{II} \le 1$).

Слід відзначити, що сильна степенева залежність підгоночних параметрів різко обмежує можливості вибору їх чисельних значень.

Для опису розсіяння важкої дірки на потенціалі невпорядкованості (НП) використовувалась ймовірність розсіяння, розрахована згідно роботи [17].

Окрім вищезгаданих механізмів розсіяння розглянемо розсіяння важкої дірки на потенціалі статичної деформації (СД). Згідно роботи [18] потенціал, викликаний полем деформації, має вид:

$$U(\mathbf{r}) = \frac{9b_0^3 e e_{14}}{\varepsilon_0} \frac{1}{r^2},$$
 (8)

де b_0 має розмірність довжини і відноситься до розміру дефекту. Зауважимо, що в (8) кутова залежність потенціалу знехтувана. Слідуючи принципу близькодії, припускаємо, що $b_0 = a_0$. Для обчислення матричного елементу переходу була використана плоскохвильова функція важкої дірки, нормована на об'єм кристалу:

$$\langle \mathbf{k}' | U(\mathbf{r}) | \mathbf{k} \rangle = \frac{9a_0^3 e e_{14}}{V \varepsilon_0} \frac{4\pi}{q} Si(qR),$$
 (9)

де $q = |\mathbf{k}' - \mathbf{k}|$, Si(x) – інтегральний синус. Розрахунок показує, що хвильовий вектор важкої дірки змінюється в межах $0 - 10^9 \text{ м}^{-1}$ при зміні енергії в межах 0-10 $k_B T$ в інтервалі температур 4,2-300 К. Для $R \sim 10^{-10} \text{ м}$ це дає оцінку для величини $Si(x) = C \approx 0,1$. Тоді ймовірність переходу має вид:

$$W_{CA}(\mathbf{k},\mathbf{k}') = \frac{2^{5}3^{4}\pi^{3}C^{2}a_{0}^{6}e^{2}e_{14}^{2}N_{SS}}{V\varepsilon_{0}^{2}\hbar} \frac{1}{q^{2}}\delta(\varepsilon'-\varepsilon), \quad (10)$$

де N_{SS} – концентрація центрів статичної деформації.

При використанні формалізму точного розв'язку стаціонарного рівняння Больцмана [19] в інтегралі по кутовій змінній θ з'являється логарифмічна розбіжність. Для уникнення цієї розбіжності поступаємо так – обмежимо нижню границю інтеграла так, щоб узгодити теорію з експериментом, тобто, використаємо цей інтеграл як підгоночний параметр:

$$\gamma_{SS} = \int_{g_0}^{\pi} \frac{\sin\theta}{1 - \cos\theta} d\theta , \qquad (11)$$

де θ_0 – кут, що відповідає підгоночному параметру γ_{SS} .

Зауважимо, що аналогічний спосіб вибору нижньої границі інтеграла використовується і в методі Конуелла-Вайскопфа [20] при розгляді розсіяння на іонізованій домішці. Однак, отримані при цьому значення радіуса дії потенціалу є занадто великі (наприклад, для концентрації дефектів ~ $10^{15} cm^{-3}$ величина $R ~ 160 a_0$).

Після цього отримуємо для цього механізму розсіяння величини $K_{\beta \alpha}^{nm}$, що фігурують у точному розв'язку рівняння Больцмана:

$$K_{\beta \alpha}^{n\,m} = \frac{2V}{\left(2\pi\right)^3} \,\frac{2^3 3^3 \pi^2 a_0^6 C^2 \hbar \, e^2 e_{l_4}^2 N_{SS} \,\gamma_{SS}}{\varepsilon_0^2 \, k_{\rm B} T} \,\delta_{\alpha\beta} \left(\frac{2m_{hh}}{\hbar^2}\right)^3 \int f_{0p}(\varepsilon) \left[1 f_{0p}(\varepsilon)\right] \left(-\varepsilon - \varepsilon_g\right) \,\varepsilon^{n+m} d\varepsilon,\tag{12}$$

де $f_{0p}(\varepsilon)$ — функція Фермі-Дірака важких дірок; $\delta_{\alpha\beta}$ — символ Крнекера , а початок відліку енергії знаходиться на дні зони провідності.

Відзначимо, що в (12) в якості підгоночного параметра фігурує добуток $\gamma_{SS} N_{SS}$.

II. Аналіз отриманих результатів

Порівняння теоретичних температурних залежностей рухливості важких дірок $\mu(T)$

	- 6		. 1
L	ao	линя	

Параметри γ для різних механізмів розсіяння							
X	γро	ŶII	γ_{PZ}	$\gamma_{ m SS} N_{ m SS} imes 10^{-14} cm^{-3}$			
0,216	0,4	1,0	0,3	0,459			
0,31	0,4	1,0	0,3	2,25			
0,38	0,45	1,0	0,3	1,2			
0,50	0,4	1,0	0,3	15,0			
0,62	0,4	1,0	0,3	9,0			

проводилося з експериментальними даними, представленими в роботах [4,7] для зразків $Cd_xHg_{1-x}Te$ з складом x = 0,216 (нелегований зразок sx19), x = 0,31(нелегований зразок 7), x = 0,38(нелегований зразок 4), x = 0.5 (нелегований зразок 8), x = 0.62 (нелегований зразок 9). При розрахунках використовувалися ті ж параметри матеріалу, що і в роботі [14]. Рівень Фермі визначався з рівняння електронейтральності: $p - n = N_{A}^{-} - N_{D}^{+}$, де $N_{A}^{-}; N_{D}^{+} - N_{D}^{+}$ концентрації іонізованих акцепторів та донорів, а параметри дефектної структури (тобто, концентрація дефектів, енергія іонізації) вибиралися згідно робіт [4,10]. Теоретичні криві $\mu(T)$ представлені на рис. 1, а-д. Суцільні лінії представляють залежності, розраховані на основі близькодіючих моделей в рамках точного розв'язку стаціонарного рівняння Больцмана. Отримані параметри розсіяння у для різних механізмів розсіяння представлені в табл. 1. Як видно, теоретичні криві добре узгоджуються з експериментальними даними У всьому досліджуваному інтервалі температур. Для оцінки ролі різних механізмів розсіяння на рис. 1, а-д представлені у вигляді точкових ліній відповідні залежності. Видно, що при низьких температурах (T < 50 K)основним механізмом розсіяння є розсіяння на потенціалі статичної деформації. Розсіяння невпорядкованості та розсіяння на полярних оптичних фононах відіграє теж суттєву роль в цьому температурному інтервалі. При вищих температурах внесок розсіяння на іонізованих домішках стає також суттєвим. Решта механізмів розсіяння – розсіяння на акустичних, п'єзоакустичних, п'єзооптичних та неполярних оптичних фононах, розсіяння на нейтральних домішках – дають нехтувано малий внесок.

Порівняння двох конкуруючих підходів – близькодіючих та далекодіючих моделей розсіяння – показує, що обидва підходи дають однакове узгодження теорії та експерименту для важких дірок в Cd_xHg_{1-x}Te [10]. Однак, на думку автора, з двох конкуруючих моделей необхідно вибирати ту, вихідні дані якої не містять фізичних суперечностей. Підхід, оснований на принципі близькодії, повністю відповідає цій вимозі.

Висновок

На основі принципу близькодії розглянуто процеси розсіяння важких дірок на дефектах кристалічної гратки в твердому розчині Cd_xHg_{1-x}Te. Встановлено добре узгодження теорії та експерименту у всьому дослідженому інтервалі температур.

- V.I. Ivanov-Omskii, B.T. Kolomiets, A.A. Malkova, V.K. Ogorodnikov, K.I. Smekalova. Galvanomagnetic properties of mercury telluride // *Phys.Status Solidi*, 8, pp. 613-619 (1965).
- [2] T.S. Harman, J.M. Honig, P.J. Trent. Hall coefficient and transverse magneto- resistance in HgTe // J. Phys. Chem. Solids., 28, pp.1995-2000 (1967).
- [3] C.R. Whitsett, D.A. Nelson. Lattice thermal conductivity in p-type HgTe // Phys. Rev., B5, pp. 3125-3129 (1972).
- [4] W. Scott, E.L. Stelzer, R.H. Hager. Electrical and far-infrared optical properties of p-type Hg_{1-x}Cd_xTe //*J. Appl. Phys.*, **47**, pp. 1408-1414 (1976).
- [5] Z. Dziuba, J. Wrobel. The mobility of electrons and holes in HgTe in the temperature range of intrinsic conduction // *Phys.Status Solidi* (*b*), **100**, pp. 379-387 (1980).
- [6] Z. Dziuba, K. Szlenk. Hole mobility in p-type HgTe //J. Phys. Chem. Solids, 45, pp.97-103 (1984).
- [7] M.C. Gold, D.A. Nelson. Variable magnetic field Hall effect measurements and analyses of high purity, Hg vacancy (*p*-type) HgCdTe //*J. Vac. Sci. Technol.*, A4, pp. 2040-2045 (1986).
- [8] J.R. Meyer, F.J. Bartoli, C.A. Hoffman. Majority-carrier mobility in p-type Hg_{1-x}Cd_xTe //*J. Vac. Sci. Technol.*, A5, pp. 3035-3039 (1987).
- [9] P.S. Wijewamasuriya, M. Boukerche, J.P. Faurie. High-quality p-type HgCdTe grown by molecular beam epitaxy // J. Appl. Phys., 67, pp. 859-862 (1990).
- [10] R.D.S. Yadava, A.K. Gupta, A.V.R. Warrier. Hole scattering mechanisms in Hg_{1-x}Cd_xTe //J. Electron. Mater., 23, pp. 1359-1378 (1994).
- [11] О.П. Малик, Я.С. Буджак. Розсіяння важких дірок в Cd_xHg_{1-x}Te (x≈0.2) при високій температурі // УФЖ, **39**, сс. 477-480 (1994).
- [12] Yongsheng Gui, Biao Li, Guozhen Zheng, Yong Chang, Shanli Wang, Li He, Junhao Chu. Evaluation of densities and mobilities for heavy and light holes in p-type Hg_{1-x}Cd_xTe molecular beam epitaxy films from magnetic-fielddependent Hall data // J. Appl. Phys., 84, pp. 4327-4331 (1998).
- [13] В.В. Богобоящий. О механизмах рассеяния дырок в кристаллах p-Hg_{0,8}Cd_{0,2}Te при низких температурах // ФТП, **36**, сс. 1418-1425 (2002).
- [14] O.P. Malyk. Electron scattering on the short-range potential in narrow gap Cd_xHg_{1-x}Te // Mater. Sci. & Engineering B, 129, pp. 161-171 (2006).
- [15] J.D. Wiley. Valence-band deformation potential for the III-V compounds // Solid State Communs., 8, pp. 1865-1868 (1970).
- [16] J.D. Wiley, M. DiDomenico. Lattice mobility of holes in III-V compounds // Phys. Rev., B2, pp. 427-433 (1970).

- [17] J.D. Wiley. Mobility of holes in III-V compounds. Chap.2 in Semiconductors and Semimetals, V.10, Eds. R.K. Willardson, A.C. Beer, pp.91-174, Academic Press (1975).
- [18] P.A. Fedders. Strain scattering of electrons in piezoelectric semiconductors // J. Appl. Phys., 54, pp.1804-1807 (1983).
- [19] O.P. Malyk. Construction of the exact solution of the stationary Boltzmann equation for the semiconductor with isotropic dispersion law // WSEAS Trans. Math., 3, pp. 354-357 (2004).
- [20] E.M. Conwell, V.F. Weisskopf. Theory of impurity scattering in semiconductors // Phys. Rev., 77, pp.388-390 (1950).

O.P. Malyk

Heavy-Hole Scattering on the Short-Range Potential of the Crystal Defects in CdHgTe Solid Solution

Lviv Polytechnic National University, Semiconductor Electronics Department, Bandera Street 12, Lviv, 79013, Ukraine

Models of heavy-holes scattering on the short-range potential caused by interaction with polar and nonpolar optical phonons, piezoelectric and acoustic phonons, static strain, neutral and ionized impurities in $Cd_xHg_{1-x}Te$ (x $\approx 0.21-0.62$) are proposed. The temperature dependences of heavy-hole mobility in temperature range 4.2-300 K are calculated.

Key words: cadmium-mercury-tellurium solid solution, charge carrier scattering