УДК 621.794'4:546.48'24

ISSN 1729-4428

Ю.В. Стадник, Л.П. Ромака, А.М. Горинь, Ю.К. Гореленко, Н.О. Мельниченко

Вплив сильного легування акцепторною домішкою Er на електричні властивості інтерметалічного напівпровідника n-ZrNiSn

Львівський національний університет імені Івана Франка, вул. Кирила і Мефодія, 6, 79005 Львів, Україна E-mail: gorelenko_yuriy@franko.lviv.ua

Досліджено кристалічну структуру, температурні залежності питомого електроопору, коефіцієнта термоерс відносно міді для твердого розчину заміщення Zr_{1-x}Er_xNiSn (half-Heusler alloys) у температурному інтервалі 80-380 К. Встановлено, що атоми Ербію відіграють роль дефектів акцепторної природи при заміщенні атомів цирконію у сполуці ZrNiSn.

Ключові слова: напів-Гейслерові фази, інтерметалічний напівпровідник, акцепторна домішка, провідність, термо-ерс.

Стаття поступила до редакції 05.07.2009; прийнята до друку 15.12.2009.

Вступ

У роботі наведено експериментальні результати легування дослідження впливу сильного акцепторною домішкою Er на електропровідність та термо-ерс напівпровідника *n*-ZrNiSn. Робота є логічним продовженням досліджень впливу сильного інтерметалічних легування напівпровідникових сполук зі структурою типу (СТ) MgAgAs (напів-Гейслерові фази) різного типу домішками з метою оптимізації їх властивостей пошуку та як термоелектричних матеріалів. Відомо, що серед напівпровідникових фаз. запропонованих лля отримання термоелектричних матеріалів, чільне місце займають інтерметалічні напівпровідники СТ MgAgAs, зокрема сполука ZrNiSn [1-4].

Теоретичні розрахунки густини електронних станів та експериментальні дослідження кристалічної структури, електрокінетичних та магнітних характеристик потрійних інтерметалічних сполук СТ MgAgAs, у яких частково заміщено один із компонентів інтерметаліду, дозволили вперше визначити механізми електропровідності для цього напівпровідників широкому класу V концентраційному та температурному інтервалах, встановити роль домішкових зон у провідності даних напівпровідників, запропонувати моделі перебудови домішкових зон та означити умови досягнення максимальних значень коефіцієнта термоелектричної потужності Z^* ($Z^* = \alpha^2 / \rho$, де α – коефіцієнт термо-ерс, *ρ* – питомий електроопір) [5-7]. Визначення умов

досягнення максимальних значень коефіцієнта Z* є надзвичайно актуальним з практичної точки зору, тому що цей клас напівпровідникових сполук є одним з найбільш перспективних для використання в елементів термоелектричних якості активних генераторів струму. В численних роботах доведено, що легування таких напівпровідників значними концентраціями заряджених домішок (10¹⁹-10²¹ см⁻³) збільшує величину термоелектричної добротності. Тому цікавим є дослідження впливу на фізичні легування інтерметалічного властивості напівпровідника ZrNiSn акцепторною домішкою, а саме, заміщення атомів Zr $(4d^25s^2)$ на атоми Er $(4f^{12}6s^2)$. Зважаючи на той факт, що в інтерметалічних сполуках рідкісноземельні елементи (R) виявляють головним чином валентний стан R⁺³ таке заміщення ймовірно буде призводити до зміни знаку основних носіїв струму, а також до переходу провідності діелектрик-метал. У нашій роботі досліджено структурні характеристики, температурні залежності електропровідності та коефіцієнта термоерс твердого розчину заміщення Zr_{1-x}Er_xNiSn.

I. Методика експерименту

Зразки сплавів твердого розчину $Zr_{1-x}Er_xNiSn$ (x = 0-0,2) виготовлено методом електродугового сплавлення вихідних компонентів в атмосфері очищеного аргону. Для приготування зразків використовували метали із вмістом основного компоненту (мас. %): Er – 99,9, Zr – 99,96, Ni – 99,99, Sn – 99,999. Гомогенізуючий відпал провели у вакуумованих ампулах з кварцового скла при 800°С впродовж 1000 год. з наступним гартуванням у холодній воді. Рентгенофазовий та структурний аналізи сплавів виконано за дифрактограмами, одержаними на дифрактометрі HZG-4A (Си $K\alpha$ -випромінювання). Параметри гратки обчислено за допомогою комплексу програм CSD [8]. Питомий електроопір (ρ), коефіцієнт термо-ерс (α) щодо міді поміряно в інтервалі температур 80-380 К. Методики вимірювань фізичних властивостей описано у роботі [9].

II. Результати експерименту та їх обговорення

Рентгенофазовий та структурний аналізи досліджених зразків твердого розчину Zr_{1-x}Er_xNiSn виявили, що вони кристалізуються у CT MgAgAs і є однофазними, крім сплавів складу Zr_{0,85}Er_{0,15}NiSn і

Рис. 1. Дифрактограми зразків твердого розчину Zr_{1-x}Er_xNiSn (на вставці показано залежність параметра гратки від концентрації Ег).

 $Zr_{0,80}Er_{0,20}NiSn$ (рис. 1), які містять незначні домішки іншої фази. Параметри гратки усіх зразків визначено за даними дифрактометрії методом порошку і наведено в таблиці. Відсутність на всіх, крім двох означених вище сплавів, рентгенівських дифрактограмах $Zr_{1-x}Er_xNiSn$, брегівських відбить, які можна було би ідентифікувати як неконтрольовані домішки, дозволяє стверджувати, що атоми Ербію найбільш ймовірно заміщають у кристалічній решітці атоми Zr.

Як бачимо з таблиці і рис. 1, параметр елементарної комірки твердого розчину заміщення $Zr_{1-x}Er_xNiSn$ монотонно зростає при заміщенні атомів меншого розміру ($r_{Zr} = 0,160$ нм) на більші атоми ($r_{Er} = 0,176$ нм). Однак, при малих концентраціях Er (x = 0,01 та 0,02) наявне незначне зменшення параметра комірки, яке може бути пов'язане із заповненням дефектів структури вихідної сполуки (ZrNiSn). При уточненні кристалічної структури ZrNiSn встановлено, що вона є дефектною, зайнятість кристалографічних позицій атомів Zr i Ni складає 90,0% і 91,6%, відповідно. Аналіз результатів отриманих при уточненні кристалічної структури кожного із зразків твердого розчину заміщення Zr_{1-x}Er_xNiSn може бути матеріалом наступної статті.

Враховуючи той факт, що Ербій у сплавах твердого розчину $Zr_{1-x}Er_xNiSn$ є акцептором відносно Цирконію, а заміщення найбільш ймовірно відбувається саме в позиції атомів Цирконію, то з теорії напівпровідників випливає, що таке заміщення є рівнозначним уведенню в сполуку ZrNiSn акцепторної домішки. При цьому концентрація домішок акцепторної природи змінюється пропорційно до концентрації Ербію у $Zr_{1-x}Er_xNiSn$.

Температурні залежності питомого електроопору досліджених зразків Zr_{1-x}Er_xNiSn мають складний

Рис. 2. Температурні залежності питомого електроопору сплавів твердого розчину заміщення Zr_{1-x}Er_xNiSn.

характер, однак на залежностях $\ln\rho(1/T)$ (рис. 2) (x = 0.0,15) присутні високотемпературні активаційні ділянки, з яких розраховано енергії активації ε^{ρ_1} з рівня Фермі на рівень протікання (таблиця). Для зразків з концентраціями акцепторної домішки, що відповідають складам $Zr_{1-x}Er_xNiSn$, де x = 0, 0,005 і 0,01 на залежностях $\ln\rho(1/T)$ можна також виділити низькотемпературні активаційні ділянки, які можна пояснити впливом стрибкової провідності у сплавах. З низькотемпературних активаційних ділянок на залежностях $\ln \rho(1/T)$ визначено енергію стрибкової провідності \mathcal{E}_{3}^{ρ} (таблиця). В інших зразках з x = 0.02-0,20 низькотемпературні ділянки відсутні, а питомий електроопір зростає з температурою, що характерно для металічного типу провідності та у випадку напівпровідників пов'язується, традиційних наприклад, з появою металічної провідності по домішковій зоні внаслідок переходу Мотта [10]. Висновок про напівпровідниковий характер провідності зразків Zr_{1-r}Er_rNiSn підтверджується також температурними залежностями коефіцієнта

Рис. 3. Температурні залежності коефіцієнта термо-ерс твердого розчину заміщення Zr_{1-x} Er_xNiSn.

термо-ерс (рис. 3), які за своїм виглядом, головним чином, відповідають залежностям $\ln \rho(1/T)$.

Відомо, що інтерметалічні напівпровідники СТ MgAgAs (TiNiSn, ZrNiSn i HfNiSn), (так звані напів-Гейслерові фази) належать до сильно легованих і сильно компенсованих напівпровідників електронного типу провідності при температурах ≥ 1,7 К, незалежно від умов синтезу і режимів гомогенізації. Електронний тип провідності ZrNiSn визначається наявністю дефектів донорної природи, зумовлений (на наш погляд) технологією синтезу, яка

Рис. 4. Залежності провідності σ за різних температур та величини енергії активації $\varepsilon_1^{\rho_1}$ від складу твердого розчину $Zr_{1-x}Er_xNiSn$.

полягає в електродуговому сплавленні вихідних компонентів i подальшим швидким неконтрольованим охолодженням сплавів. шо ймовірно призводить до локальних розупорядкувань у кристалічній структурі злитка але зі збереженням дальнього порядку і, можливо, наявністю домішок донорної природи у вихідних компонентах. Отримання твердого розчину заміщення Zr_{1-x}Er_xNiSn адекватне введенню у напівпровідник дефектів акцепторної природи до певних концентрацій Ербію повинно збільшувати ступінь компенсації напівпровідника п-типу провідності (якщо вважати, що в усіх зразках концентрація неконтрольованих дефектів (домішок) однакова, оскільки умови синтезу чистота вихідних компонентів однакова, а акцептори і донори іонізовані повністю). Більші кількості Ег призводять до повної компенсації напівпровідника $(N_A = N_D),$ перекомпенсації матеріалу з *n*- на *p*-тип провідності, а потім – до зменшення ступеня компенсації уже напівпровідника р-типу провідності. Звернімо увагу на факт зміни знаку коефіцієнта термо-ерс з електронного на дірковий при концентрації акцепторної домішки для зразків $Zr_{1-x}Er_xNiSn$ ($x \ge 0.01$), що свідчить про перекомпенсацію напівпровідника. При концентраціях домішки Er (x = 0,005-0,01) у Zr₁. _xEr_xNiSn досягається повна компенсація сильнолегованого напівпровідника [11], рівень Фермі розміщується посередині забороненої зони, а величина енергії активації \mathcal{E}_1^{ρ} з рівня Фермі на рівень протікання при цьому повинна бути максимальною, про що свідчить і збіг максимального значення величини \mathcal{E}_{1}^{ρ} та мінімального значення провідності напівпровідника (рис. 4). Тобто при такій кількості Ербію (x = 0.005 - 0.01)концентрації домішок акцепторної та донорної природи є приблизно однаковими, а ступінь компенсації напівпровідника є максимально високим.

Аналіз поведінки температурних залежностей α (рис. 3) вказує та те, що перекомпенсація напівпровідника також залежить і від температури. Тенденція до зміни знаку термо-ерс спостерігається вже при найменшому легуванні (x = 0,005-0,01), а при

Сплав	а, нм	α, мкВ/К		ρ , мкОм·м		ε_1^{ρ} , меВ	ε_3^{ρ} ,
		90 K	300 K	90 K	300 K		меВ
ZrNiSn	0.61094(1)	-98,3	-279,8	126,3	78,6	28,9	1,6
Zr _{0,995} Er _{0,005} NiSn	0,61180(1)	-1,8	-265,5	14989,4	868,9	152,7	3,9
Zr _{0,99} Er _{0,01} NiSn	0,61170(3)	5,7	-24,7	1468,9	560,7	98,8	1,6
Zr _{0,98} Er _{0,02} NiSn	0,61165(3)	13,1	38,7	459,8	364,3	62,6	-
Zr _{0,96} Er _{0,04} NiSn	0,61238(4)	12,7	44,1	198,0	168,5	16,9	-
Zr _{0,94} Er _{0,06} NiSn	0,61243(3)	27,1	73,9	204,0	159,6	14,7	-
Zr _{0,92} Er _{0,08} NiSn	0,61316(2)	5,9	32,9	76,2	70,1	10,7	-
Zr _{0,90} Er _{0,10} NiSn	0,61347(3)	4,9	37,9	69,9	65,2	7,3	-
Zr _{0,85} Er _{0,15} NiSn	0,61402(1)	-0,7	14,4	22,2	22,5	2,7	-
Zr _{0,80} Er _{0,20} NiSn	0,61515(1)	4,3	25,8	9,1	10,3	-	-

Кристалографічні, електрофізичні та енергетичні характеристики сплавів твердого розчину Zr_{1-x}Er_xNiSn

x = 0,02 додатній знак коефіцієнта термо-ерс зберігається в усьому температурному інтервалі. При концентраціях акцепторної домішки $x \ge 0.02, N_A > N_D$, отримуємо сильно легований i сильно компенсований напівпровідник р-типу провідності. Більші концентрації домішки акцепторної природи (Er) лише понижуватимуть ступінь компенсації напівпровідника, а рівень Фермі буде зсуватись у бік валентної зони з подальшим дрейфом у зоні неперервних енергій, про що також свідчить зменшення величини ε_{1}^{ρ} (таблиця, рис. 4), а також металічний тип залежності $\ln \rho(1/T)$ при x = 0,2(рис. 2). Отже, як і у випадках легування напівпровідника *p*-TiCoSb донорною домішкою Нікелю [12] або легування n-ZrNiSn акцепторною домішкою Скандію [6], у Zr_{1-x}Er_xNiSn також реалізується перехід Андерсона, який настає тоді, коли склад твердого розчину змінюється так, що величина $E_V - E_F = \Delta E$ змінює знак [13]. Дійсно, за температур $Zr_{1-r}Er_rNiSn$ (x = 0)низьких € компенсованим напівпровідником електронного типу

провідності, а рівень Фермі фіксується у домішковій донорній зоні. При $0,02 \le x \le 0,15$ рівень Фермі розміщується біля вершини валентної зони, $(E_V - E_F) < 0$. У $Zr_{1-x}Er_xNiSn$ при x > 0,20 провідність визначають вільні дірки валентної зони, рівень Фермі розташовується у валентній зоні і $(E_V - E_F) > 0$. Отже, легування напівпровідника ZrNiSn акцепторною домішкою Ербію призводить до зміни знаку основних носіїв струму та переходу провідності ізолятор-метал.

Робота виконана в рамках гранту Міністерства освіти і науки України № ДР 0109U002069.

Стадник Ю.В. – к.х.н., ст.н.сп., пров.н.сп.; *Ромака Л.П.* – к.х.н., ст.н.сп., пров.н.сп.; *Горинь А.М.* – к.х.н., н.сп.; *Гореленко Ю.К.* – ст.н.сп.; *Мельниченко Н.О.* – к.х.н., м.н.с.

- [1] R.V. Skolozdra, Yu.V. Stadnyk, L.P. Romaka, F.G. Aliev. Intermetallic compounds Me'Me"Sn the new semiconductors class with the narrow energy gap // *J. Thermoelectricity*, **3**, pp. 29-47 (1994).
- [2] Yu.V. Stadnyk, L.P. Romaka, A.M. Goryn, Yu.K. Gorelenko, J. Pierre, R.V. Skolozdra. Solid solutions ZrNi₁, _xM_xSn (M = Cr, Mn, Cu) and their electrical and magnetic properties // J. Alloys Compd., 262-263, pp. 476-480 (1997).
- [3] Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, C. Uger. Effects of substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds // Applied Physics Letters, 79(25), pp. 4165-4167 (2001).
- [4] S. Katsuyama, H. Matsushima, M. Ito. Effects of substitution for Ni by Co and/or Cu on the thermoelectric properties of half-Heusler ZrNiSn // J. Alloys Compd., 385, pp. 232-237 (2004).
- [5] О.І. Бодак, В.А. Ромака, Ю.К. Гореленко, М.Г. Шеляпина, Ю.В. Стадник, Л.П. Ромака, В.Ф. Чекурін, Д. Фрушарт, А.М. Горинь. Умови виникнення максимальної термоелектричної потужності в інтерметалічних напівпровідниках структурного типу MgAgAs // ФХТТ, 7(1), сс. 76-81 (2006).
- [6] Yu. Stadnyk, V.A. Romaka, Yu. Gorelenko, L.P. Romaka, D. Fruchart, V.F Chekurin. Metal-insulator transition induced by changes in composition in the Zr_{1-x}Sc_xNiSn solid solution // *J. Alloys Compd.*, **400**, pp. 29-32 (2005).
- [7] В.А. Ромака, Ю.В. Стаднык, М.Г. Шеляпина, Д. Фрушарт, В.Ф. Чекурин, Л.П. Ромака, Ю.К. Гореленко. Особенности перехода проводимости металл-диэлектрик в узкощелевых полупроводниках структурного типа MgAgAs // ФТП, 40(2), сс. 136-141 (2006).
- [8] L.G. Akselrud, Yu.N. Grin, P.Yu. Zavalii et al. CSD universal program package for single crystal or powder structure data treatment // Coll. Abstr. 12 Eur. Crystallogr. Meeting. Nauka, Moscow. 3, p. 155 (1989).

Таблиця

- [9] Ю.К. Гореленко, Р.С. Гладишевський, Ю.В. Стадник та ін. Методичні вказівки до виконання лабораторних робіт із спецкурсів "Електричні та магнітні властивості неорганічних матеріалів" і "Сучасні неорганічні матеріали" ВЦ ЛНУ ім. І.Франка, Львів.. 30 с. (2008).
- [10] Н. Мотт, Э. Девис. Электронные процессы в некристаллических веществах (М., Мир, 1982) [Пер. с англ.: N.F.Mott, E.A.Devis, Electron processes in non-crystalline materials (Oxford, Clarendon Press, 1979)]
- [11] Б.И. Шкловский, А.Л. Эфрос Полностью компенсированный кристаллический полупроводник как модель аморфного полупроводника // ЖЭТФ, **62**(3), сс. 1156-1165 (1972).
- [12] Yu. Stadnyk, V.A. Romaka, M. Shelyapina et al. Impurity band effect on TiCo_{1-x}Ni_xSb conduction: Donor impurities // J. Alloys Compd., 421, pp. 19-23 (2006).
- [13] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников. Наука, М. 416 с. (1979).

Yu.V. Stadnyk, L.P. Romaka, A.M. Goryn', Yu.K. Gorelenko, N.O. Melnychenko

Effect of Heavily Doping by Er Acceptor Impurity on Electrical Properties of n-ZrNiSn Intermetallic Semiconductor

Ivan Franko National University of Lviv, Kyryl & Mephodiy Str., 6, 79005, Lviv, Ukraine

The crystal structure, temperature dependences of the resistivity, and thermopower, in reference to the pure copper, for the $Zr_{1,x}Er_xNiSn$ substituting solid solution (so called half-Heusler alloys) in a temperature range 80 - 380 K were investigated. It was determined that the Erbium atoms behaved as acceptor-like defects while Zirconium atoms were substituted in the ZrNiSn compound.

Key words: half-Heusler phases, intermetallic semiconductor, acceptor impurity, electro-conductivity, thermopower