УДК 021.315.592

ISSN 1729-4428

Я.П. Салій, Д.М. Фреїк, Л.Й. Межиловська, І.С. Биліна, І.М. Фреїк Процеси формування і структура тонких плівок PbTe:Sb

Прикарпатський національний університет імені Василя Стефаника, вул. Шевченка, 57, Івано-Франківськ, 76000, Україна, E-mail: <u>freik@pu.if.ua</u>

Представлено результати дослідження процесів орієнтаційного структуроутворення у парофазних конденсатах PbTe:Sb/ситал, отриманих за допомогою відкритого випаровування у вакуумі при температурах осадження T_{Π} =(420-520) К і часі осадження $\tau = (15-240)$ с. Встановлено, що на поверхні ситалу формуються окремі нанооб'єкти розмірами до 300 нм, які мають сформовану кристалографічну будову із комбінацій граней {100} і {110} кристалічної структури NaCl та представлено їхні гномостереографічні проекції для усіх випадків. Визначено кути між нормалями до граней наноструктур, які складають 45°, 60°, 90°, 120° і 135°. Представлено залежності полярного ρ і азимутального ϕ кутів в залежності від різних технологічних факторів. Виявлені особливості кристалічних форм пояснено електрично-нейтральним станом кристалографічних площин та природою ситалу.

Ключові слова: наноструктури, плюмбум телурид, кристалічні форми, полярні та азимутальні кути.

Стаття поступила до редакції 28.07.2013; прийнята до друку 15.09.2013.

Вступ

Тонкі і низькорозмірні конденсати плівки халькогенідів плюмбум перспективні напівпровідникові структури для створення на їх основі активних елементів мікро- і наноелектроніки випромінювання (детектори i джерела в інфрачервоній області оптичного спектру та термоелектричних перетворювачів енергії лля температур (500-850) К) [1,2]. В останні роки інтерес до них різко зріс у зв'язку із новими можливостями, які пов'язані з переходом матеріалу в область мікро- і нанорозмірів [3,4]. Легування PbTe гетеровалентними домішками п'ятої групи (Sb, Bi) Періодичної таблиці зумовлює модифікацію електронної і фононної підсистем кристала, що веде до покращення термоелектричних властивостей [4].

Малі ефективні маси носіїв заряду і високі значення діелектричної проникності у плюмбум халькогенідах забезпечують реалізацію добрих умов розмірного квантування і локалізації носіїв.

Для отримання тонких плівок сполук IV-VI широко використовуються парофазні вакуумні технології [1,5]. При їх реалізації, як правило, мають місце морфологічні зміни поверхні нарощуваних шарів за рахунок механічних напружень, які зумовлені невідповідностями у сталих граток, коефіцієнтів лінійного розширення конденсатів та підкладок, на які вони наносяться. У результаті цього фронт росту залишається плоским лише до досягнення деякої критичної товщини шару (приблизно в декілька моношарів

Таблиця 1

Технологічні фактори осадження на підкладки із ситалу парофазних конденсатів PbTe:Sb у відкритому вакуумі. Температура випаровування

$T_{\rm D} =$	970	К.
+ n	110	1

	D	
Nº	Температура	Час
зразка	підкладки,	осадження τ,
	Т _П , К	с
8	470	15
9	470	30
10	470	40
11	470	50
12	470	60
13	470	90
14	470	120
15	470	150
16	470	210
17	470	240
18	520	15
19	420	15
20	520	60
21	420	60
22	520	240
23	420	240
24	520	120
25	420	120

Рис. 1. Полярний ρ і азимутальний ϕ кути граней піраміди.

(ML)), після чого наступають умови, за яких відбувається поява хвилястого фронту або навіть деяких виступів (у вигляді пірамід, що мають нанорозміри). Вони забезпечують пониження пружньої енергії системи і появляється можливість самоорганізації у процесі росту. Саме цими обставинами забезпечується перехід від 2D- до 3D у механізмі росту за Странскі- Крастанова [6]. Розмір, форма і густина пірамід на поверхні залежать від температури підкладки й умов, що забезпечують формування тільки 2 D-(Франка ван дер Мерве) або 3D-(Фольмера - Вебера) структур [6].

У наших роботах[7-10] показана можливість реалізації нано- і квантово-розмірних структур сполук IV-VI як у методі «гарячої стінки», так і відкритого випаровування у вакуумі.

Метою даної роботи є подальше вивчення процесів орієнтаційного структуроутворення у парофазних конденсатах легованого сурмою плюмбум телуриду PbTe:Sb на підкладках із ситалу у методі відкритого випаровування у вакуумі.

I. Методика експерименту

Тонкоплівкові наноструктури PbTe:Sb отримували з парової фази методом відкритого випаровування у вакуумі на підкладки із ситалу. Вміст сурми складав 0,25 ат.% Sb. Температура випарника складала $T_B = 970$ K, а конденсації $T_{\Pi} = (420-520)$ K. Товщину конденсату задавали часом осадження пари від 15 с до 240 с та вимірювали за допомогою мікроінтерферометра МИИ-4. Значення технологічних факторів наведені у таблиці 1.

Морфологічні особливості наноструктур у конденсатах досліджували методами атомно-силової

Таблиця 2

Варіант	Кути, °		Варіант	Кути, °			
1	135	135	60	9	120	90	60
2	135	120	45	10	90	90	90
3	135	120	90	11	90	90	45
4	135	90	90	12	90	60	45
5	135	90	60	13	90	60	60
6	120	90	45	14	60	45	45
7	120	120	90	15	60	60	60
8	120	120	60				

Варіанти кутів між нормалями до площин {100} і {110} тригранних пірамід

Таблиця 3

Експериментальні та модельні кути між нормалями до різних граней чотиригранних пірамід структури PbTe:Sb (зразок №23, табл.1)

	Кути, °					
експеримент	$99^{0}\pm10^{0}$	$139^{0}\pm8^{0}$	$78^{0}\pm11^{0}$	$76^{0}\pm9^{0}$	$143^{0}\pm5^{0}$	$78^{0}\pm11^{0}$
експеримент	$88^0 \pm 10^0$	$148^{0}\pm9^{0}$	$79^{0}\pm10^{0}$	$77^{0}\pm9^{0}$	$114^{0}\pm3^{0}$	$82^{0}\pm6^{0}$
експеримент	$85^{0}\pm7^{0}$	$124^{0}\pm5^{0}$	$81^{0}\pm6^{0}$	$56^{0}\pm6^{0}$	$132^{0}\pm8^{0}$	$96^{0}\pm6^{0}$
модель	90^{0}	135^{0}	90^{0}	60^{0}	135^{0}	90^{0}

Таблиця 4

Експериментальні та модельні кути між нормалями до різних граней чотиригранної піраміди для структур PbTe:Sb згідно таблиці 1.

Зразок	Кути, °					
23	$70^{0}\pm10^{0}$	$135^{\circ}\pm 5^{\circ}$	$63^{\circ}\pm3^{\circ}$	$78^{\circ} \pm 12^{\circ}$	$117^{0}\pm6^{0}$	$108^{0}\pm10^{0}$
	(60^{0})	(120°)	(60^{0})	(90°)	(120^{0})	(120^{0})
22	$61^{0}\pm7^{0}$	$87^{0}\pm8^{0}$	$78^{0}\pm7^{0}$	$86^0 \pm 8^0$	$119^{0}\pm8^{0}$	$47^{0}\pm9^{0}$
	(45^{0})	(90°)	(90°)	(90°)	(120^{0})	(45^{0})
17	$116^{0}\pm8^{0}$	$90^{0}\pm9^{0}$	$45^{0}\pm9^{0}$	$60^{0}\pm7^{0}$	$130^{\circ}\pm68^{\circ}$	$74^{0}\pm7^{0}$
	(120°)	(90°)	(45^{0})	(45^{0})	(135°)	(90°)

Рис. 2. Експериментальні (І) та реставровані (ІІ) тригранні піраміди структури РbTe:Sb/ситал, що відповідають різним комбінаціям граней для варіантів 10(а), 7(б), 13(в) (табл. 2), відповідно.

Рис. 3. Експериментальні (І) та реставровані (ІІ) різні чотиригранні піраміди структури РbTe: Sb (зразок №23, табл.1) до граней, що відповідають кутам між нормалями 90°, 60°, 90°, 90° відповідно (табл. 3).

Рис. 4. Експериментальні (І) та реставровані (ІІ) різні чотиригранні піраміди структури PbTe:Sb/ситал, що відповідають кутам між нормалями до граней (табл. 4) для зразків №17(а); №22(б); №23(в) (табл.1).

Рис. 5. Гномостереографічні проекції площин {100} і {110} (а,в,с) та {110} (d) чотиригранних пірамід структури РbTe: Sb для зразків №17 (а), №23 (б), №22 (в), №23 (г) (табл.1).

Рис. 6. Гномостререографічні проекції площин {110} (а,в), {100} (с) та {110}, {100} (с) тригранних пірамід структури РbTe: Sb для зразків №22 (а), №25(б), №24 (в), №24 (г) (табл.1).

мікроскопії (ACM) Nanoscope 3a Dimention 3000 (Digital Instruments USA) в Інституті фізики напівпровідників ім. В.Є. Лашкарьова НАНУ України (м. Київ). Вимірювання проведені V центральній частині зразків із використанням серійних кремнієвих зондів NSG-11 із номінальним радіусом заокруглення вістря до 10 нм (NT0MDT, Росія). За результатами АСМ-досліджень окремих нанокристалітів визначали полярні р та азимутальні ф кути (рис.1), за якими розраховували кути між нормалями до площин граней (табл.3-4). Крім того за результатами АСМ-зображень окремих нанокристалітів (рис. 2,3,4 – I) та розрахунків відповідних кутів (табл.2,3,4) методами комп'ютерного моделювання реставровано ïx ілеальні відображення (рис. 2,3,4 – II). Також побудовано гномостереографічні проекції площин {100} і {110} досліджуваних тригранних та

чотиригранних пірамід а також представлено аналіз полярних ρ та азимутальних φ кутів окремих зразків.

II. Результати дослідження та їх аналіз

2.1. Прості кристалографічні форми. Відомо, що ситали містять велику кількість дрібних (< 1 мкм) кристалів, пов'язаних між собою скловилним міжкристалічним прошарком, TOMV епітаксійні об'єкти на ïx поверхні можуть наслідувати орієнтацію площин окремих кристалітів полікристалічної підкладки. Кристали PbTe відносяться до речовин з переважаючим іон-іонним зв'язком зі структурою типу NaCl, а електричнонейтральними шарами 3 найбільшими ретикулярними густинами є атомні площини систем {100} і {110}. Саме площини цих систем за певних умов будуть утворювати нанооб'єкти на поверхні конденсату. Кути між нормалями до граней цих простих кристалічних форм можуть набувати наступних величин 45° , 60° , 90° , 120° і 135° . Шляхом повного перебору можливих комбінацій трьох площин із згаданих двох систем утворюється 15 різних можливих тригранних пірамід, якщо вважати однаковими енантіморфні піраміди. В табл. 2 подано варіанти послідовності кутів між нормалями до сусідніх граней відповідно. Встановлено, що розмір багатогранників з часом осадження зростає, а їх форма змінюється, окремі нанооб'єкти поглинаються іншими. Для малих часів осадження нанооб'єкти мали пологі форми, а для більших – стрімкіші. Також виявлено, що за умов осадження 2 хв і більше (табл. 1 – № 14-17; № 22-25), формуються кристалічні багатогранники різних комбінацій простих форм з довільною орієнтацією цих об'єктів у просторі. Таке розмаїття, на нашу думку, пов'язане з властивостями підкладки з ситалу. Для детального аналізу простих кристалографічних форм PbTe:Sb/ситал вибрано об'єкти, сформовані на пізніх стадіях осадження: №24 і №25 при т = 2 хв та №17, 22 і 23 при т = 4 хв (табл.1; рис. 2, 3, 4). Так, зокрема, піраміда, отримана за умов вирощування №24 (табл.1; рис. 2,а) сформована трьома гранями (100), (010), (001) системи {100}, тому що кути між нормалями до граней цієї тригранної піраміди становлять 81⁰±8⁰, 93°±8° і 82°±7°; піраміда на поверхні плівки №25 (табл.1; рис. 2,б) сформована трьома гранями (110), (101), (011) системи {110} — відповідні кути для цієї тригранної піраміди становлять $89^{0}\pm15^{0}$, $109^{0}\pm13^{0}$ і $110^{0} \pm 17^{0}$. На рис. 2. представлені експериментальні та реставровані за допомогою комп'ютерного моделювання тригранні багатогранники, що відповідають різним комбінаціям площин простих форм 10, 7 і 13 (табл. 2).

У таблиці 3 показано кути між нормалями до граней декількох багатогранників наноструктури №23, а на рис. 3 експериментальні та реставровані чотиригранні багатогранники цієї наноструктури, що відповідають одній комбінації площин простих форм.

Π

Рис. 7. 2D АСМ-зображення (а) та розподіл полярних ρ і азимутальних ϕ (б,г; б – колові діаграми) кутів поверхонь нанокристалів у парофазних структурах PbTe:Sb/ситал отриманих за різних часів осадження: $\tau = 120 \text{ c} - \text{I}, \tau = 240 \text{ c} - \text{II}$. Температура випаровування $T_B = 970 \text{ K}$, температура осадження $T_{\Pi} = 470 \text{ K}$.

Рис.8. 2D ACM-зображення (а) та розподіл полярних ρ і азимутальних ϕ (б,г; б – колові діаграми) кутів поверхонь нанокристалів у парофазних структурах PbTe:Sb/ситал отриманих за різних температур осадження: $T_{\Pi} = 420 \text{ K} - I$, $T_{\Pi} = 520 \text{ K} - II$. Температура випаровування $T_{B} = 970 \text{ K}$, час осадження $\tau = 120 \text{ c}$.

У таблиці 4 представлено кути між нормалями до граней інших досліджених багатогранників, а також зображені експериментальні (рис. 4-I) та реставровані (рис. 4-II) чотиригранні багатогранники, що відповідають різним комбінаціям площин простих форм.

На рис. 5 зображено гномостереографічні проекції поверхневих багатогранників, що складаються з чотирьох граней комбінації двох простих форм, а на рис. 6 – проекції поверхневих багатогранників, що складаються з трьох граней однієї простої форми і комбінації двох простих форм. З рис. 5 видно, що грані утворюють пари і ці пари споріднених граней можуть двояко орієнтуватися між собою.

Серед форм залежно від часу осадження, як можна припустити, вже не знайдено пологих форм 12, 14, 15; і ще не зустрічаються сформовані форми 1 і 3 згідно варіантів таблиці 2.

Виходячи з точності величин одержаних експериментальних двогранних кутів, можна стверджувати, що гіпотеза про комбінацію саме згаданих простих форм підтверджуються.

На рисунках 7-9 представлено орієнтаційні особливості наноструктур в залежності від температури підкладки при часі осадження 120 с. По аналогії на рис. 10-12 розглядаються плівки, отримані вже при більшому часі осадження, а саме 240 с.

2.2. Процеси формування. На рис. 7 представлено процеси формування наноструктур в залежності від часу їхнього осадження, а на рис. 8 розглядаються особливості утворення нанорозмірних об'єктів при різній температурі підкладки Т_П.

Аналізуючи рис. 7-8 ми бачимо, що при часі осадження 240 с має місце поступове зменшення як нормальних, так i латеральних розмірів нанокристалітів при переході від 420 К до 470 К (рис 8-I.а та 7-II.а відповідно), а потім спостерігається тенденція до їх зростання при переході від 470 К до 520 К (рис 7-II,а та 8-II,а відповідно). Аналогічну картину ми спостерігали і при інших сталих часів осадження за змінної температури осадження. Причому при $T_{\Pi} = 420$ К (рис. 8-I,а) спостерігається значно більша кількість об'єктів правильної форми ніж для випадків $T_{\Pi} = 470$ К (рис. 7-II,а) та $T_{\Pi} = 520$ К (рис. 8-II,а). При збільшенні часу осадження за сталої температури підкладки ми спостерігаємо збільшення як нормальних так і латеральних розмірів наноструктур (рис.7; I-II, а)

Для аналізу азимутального кута φ використано колові діаграми (рис.7-8; І-ІІ, б) а також зображення розподілу кута φ (рис.7-8; І-ІІ, г). Видно, що при температурі підкладки $T_{\Pi} = 420$ К характерним є кут $\varphi = 90^{\circ}$ (рис.8-І; б,г), а при $T_{\Pi} = 520$ К – $\varphi = 120^{\circ}$ (рис.8-ІІ; б,г). Що стосується залежності азимутального кута φ від різного часу осадження τ за сталої температури осадження T_{Π} , то тут ми не спостерігаємо такої залежності. І при часі осадження $\tau = 120$ с (рис.7-І; б,г) і при $\tau = 240$ с (рис.7-ІІ; б,г) за температури осадження $T_{\Pi} = 470$ К спостерігається характерний кут $\phi = 120^{\circ}$.

Таким чином, при температурі $T_{\Pi} = 420$ К (рис.8-І) формуються нанокристали з тетрагональною симетрією у перерізі паралельному до підкладки, а при $T_{\Pi} = 470$ К (рис.7;І-ІІ) і $T_{\Pi} = 520$ К (рис.8;ІІ) з тригональною, що є можливим для об'єктів кубічної сингонії.

Із представлених розподілів полярних кутів р поверхонь нанокристалів (рис.7-8, І-ІІ, в). видно, що для $T_{\Pi} = 470$ К спільним кутом, що відповідає максимуму розподілу є $\rho = 34\pm1^{\circ}$ при $\tau = 120$ с (рис.7-І, в) і $\rho = 22\pm1^{\circ}$ при $\tau = 240$ с (рис.8-ІІ, в). Таким чином, максимум розподілу для $\tau = 240$ с зміщуються в область менших значень кутів. Для $T_{\Pi} = 420$ К при $\tau = 240$ с (рис.8-І, в) $\rho_1 = 52\pm1^{\circ}$, $\rho_2 = 63\pm1^{\circ}$ а для $T_{\Pi} = 520$ К при тому самому часі полярний кут $\rho = 31\pm1^{\circ}$ (рис.8-ІІ, в), тобто при збільшенні температури осадження також має місце зміщення полярних кутів в область менших значень. Такі зміни зумовлені особливостями зародження і росту окремих нанокристалів за механізмом Фольмера-Вебера.

Висновки

- 1. Представлено результати АСМ-дослідження топологічних особливостей наноструктур РbTe:Sb/ситал, отриманих відкритим випаровуванням наважки синтезованої сполуки у відкритому вакуумі за різних технологічних факторів.
- Для окремих нанокристалітів PbTe:Sb/ситал із чітко вираженою огранкою для кожної грані визначено полярні і азимутальні кути, виходячи із яких знайдено кути між нормалями до граней і співставлено одержані набори з теоретично можливими.
- Виявлено, що окремі сформовані нанокристаліти PbTe:Sb/ситал мають пірамідальну форму і сформовані площинами систем {100} і {110} кристалів NaCl, які є електрично-нейтральними з найбільшою ретикулярною густиною атомів.
- Методами комп'ютерного моделювання реставровано виявлені у конденсатах PbTe:Sb/ситал кристалічні форми, що відповідають різним комбінаціям площин структури NaCl.
- 5. Проаналізовано залежність азимутальних ф та полярних р кутів від різних технологічних факторів, а саме від часу τ та температури T_{Π} осадження. Виявлено що як при збільшенні тривалості напилення при $T_{\Pi} = 470 \text{ K}$ так і при збільшенні температури осадження при максимум $\tau = 240 \text{ c}$ розподілу кута ρ зміщується в область менших значень. Азимутальний кут ф залишається характерним для всіх часів т і складає ф=120°, що є характерним для тригональної симетрії.

- [1] D.M. Freik, M.A. Galushhak, L.I. Mezhilovskaja. Fizika i tehnologija poluprovodnikovyh plenok (Vishha shkola, L'viv, 1988).
- [2] S.P. Zimin, E.S. Gorlachev. Nanostrukturirovanye hal'kogenidy svinca: monografija (JarGU, Jaroslavl', 2011).
- [3] Ju.I. Ravich, B.A. Efimova, I.A. Smirnov. Metody issledovanija poluprovodnikov v primenenii k hal'kogenidam svinca PbTe, PbSe i PbS (Nauka, Moskva, 1968).
- [4] N.H. Abrikosov, L.E Shelimova. Poluprovodnikovye materialy na osnove soedinenij A4V6 (Nauka, Moskva, 1975).
- [5] Ju.Z. Bubnov, M.S. Lur'ε, F.G. Staros, G.A. Filaretov. Vakuumnoe nanesenie plenok v kvazizamknutom ob#eme (Jenergija, L.,1975).
- [6] A.Ja. Shik, L.G. Bakueva, S.F. Musihin, S.A. Rykov. Fizika nizkorazmernyh sistem (Nauka, Moskva, 2001).
- [7] D.M. Freïk, I.M. Lishhins'kij, P.M. Litvin, V.V. Bachuk. FHTT. 9(4), 529 (2008).
- [8] D.M. Freïk, P.M. Litvin, I.I. Chav'jak, I.M. Lishhins'kij, V.V. Bachuk. Physics and chemistry of solid state 10(4), 789 (2009).
- [9] V.V. Bachuk. PCSS 13(1), 88 (2012).
- [10] D.M. Freïk, Ja. P. Salij, I.M. Lishhins'kij, V.V. Bachuk, N.Ja. Stefaniv. Zhurnal Nano- ta Elektronnoï Fiziki. 4(2), 02012-1 (2012).

Y.P. Saliy, D.M. Freik, L.Yo. Mezylovska, I.S. Bylina, I.M. Freik

Orientation Aspect and Simple Crystallographic form Nanostructures in Vapor-Phase Condensates PbTe: Sb on Ceramics

Vasyl Stefanyk Precarpathian National University, 57, Shevchenko Str., Ivano-Frankivsk, 76000, Ukraine, E-mail: <u>freik@pu.if.ua</u>

Lead telluride (PbTe) is an advanced semiconductive material in manufacturing optoelectronics devices related to infrared spectrum area, as well as in termoelectronics of medium frequency temperature (500-850) K. Vapor-phase nanostructures on glass ceramics lining have been received from vapor-phase procedure due to open evaporation in vacuum environment ahead of obtaining synthesized compound PbTe:Sb that contains 0.25 at% in different time $\tau = (15-240)$ c and temperatures T_{Π} =(420-520) K deposition, according to evaporation temperature $T_B = 970$ K. The results of research orientation processes of structure formation in the vapor-phase condensates PbTe: Sb / Sital obtained by open evaporation under vacuum at deposition temperatures $T_S = (420-520)$ K and deposition time $\tau = (15-240)$ s. Found that on the surface of Sital are formed individual nanoobjects up to 300 nm, which are formed by the crystallographic structure of combinations of faces {100} and {110} crystal structure of NaCl and presented their hnomostereohrafic projections for our case. Defined angles between the normal to the face of nanostructures, which are 45 °, 60 °, 90 °, 120 ° and 135 °. The features attributed to crystalline forms electrically neutral state crystallographic planes and the nature of Sital.

Keywords: nanostructures, Lead Telluride, crystalline form, the polar and azimuthal angles.