УДК 24621.472.629.78

ISSN 1729-4428

Г.Е. Малашкевич¹, Л.Й. Межиловська², Д.М. Фреїк², Я.С. Яворський²

Морфологія поверхні та оптичні властивості наноструктур на основі PbTe

¹Інститут молекулярної і атомної фізики НАНБ Білорусі,

220072, Мінськ, проспект Незалежності, 70, Білорусь, E-mail: <u>malash@imaph.bas-net.by</u> ²Прикарпатський національний університет імені Василя Стефаника, вул. Шевченка, 57, Івано-Франківськ, 76000, Україна, E-mail: <u>freik@pu.if.ua</u>

Досліджено процеси росту, топологія і спектральні характеристики парофазних наноструктур PbTe на монокристалічних ((001) слюда-мусковіт, (111) кремній, (111) германій) підкладках та полірованому склі і пластинах плавленого кварцу, покритого гель-плівками. Встановлено вплив імпульсного та стаціонарного розігріву на зміну їх структурного складу і спектроскопічні властивості. Виявлено зміну крутизни краю смуги міжзонного поглинання наноструктур на основі плюмбум телуриду від ступеня орієнтованості і величини кристалітів, а також від температури і тривалості їх термообробки.

Ключові слова: плюмбум телурид, наноструктури, топологія, оптичні властивості.

Стаття поступила до редакції 12.10.2012; прийнята до друку 15.03.2013

I. Вступ

Плюмбум телурид, як типовий представник напівпровідникових сполук IV-VI, характеризується рядом специфічних фізико-хімічних властивостей і є перспективним матеріалом для створення активних елементів оптоелектронних пристроїв (фотодіоди, фоторезистори, інжекційні лазери) в інфрачервоній області оптичного спектра та термоелектричних перетворювачів теплової енергії в інтервалі температур (600-750)К [1,2].

Робочі характеристики та конкретні області використання тонкоплівкових та нанорозмірних конденсатів на основі РbTe у значній мірі визначаються морфологічним станом їх поверхні та топологією сформованих окремих нанокристалітів, які, у свою чергу, є залежними від технологічних факторів їх отримання [3,4]. Практично оправданими багатьма функціональними можливостями i3 вважаються парофазні методи осадження тонкоплівкових конденсатів на твердих підкладках. Не дивлячись на багаточисельнні дослідження відзначених проблем до цього часу залишається ще недостатньо вивченими окремі питання, які зокрема пов'язані із впливом структурних характеристик конденсатів РbTе на весь комплекс їх оптичних властивостей [5-16]. Пропонована стаття, до певної міри, доповнює цю прогалину тонкоплівкового матеріалознавства плюмбум телуриду.

II. Методика експерименту

Для дослідження використовувалися на основі РЬТе приготовлені наноструктури осадженням пари синтезованої фази на підкладки різної природи. В якості таких підкладок використовувалися пластинки (111) Si, (111) Ge, свіжі сколи (0001) слюди мусковіт марки СТА, поліроване скло, а також плавлений кварц, покритий SiO₂, GeO₂- і HfO₂ гель-плівками без і з наночастинками срібла і золота. Зазначені оксидні плівки отримували методом пошарового нанесення пілклалки. шо оберталися, простих на або композитних золів SiO₂, GeO₂ та HfO₂. Останні додатково містили AgNO₃ або HAuCl₄. Наночастки благородних металів формувалися при відпалі цих плівок на повітрі, про що свідчила поява відповідних плазмових смуг поглинання.

Мікроструктура синтезованих плівок і процентне співвідношення них свиншю в i телуру досліджувалися растрового за допомогою скануючого електронного мікроскопа LEO-1420REM (Carl Zeiss, Німеччина). Використовувався також ІЧмікроскоп Continuum компанії Thermo Fisher Scientific. Товщина плівок визначалася за допомогою профілометра Talystep з похибкою ± 20%.

Фазовий аналіз отриманих плівок РbTе контролювався за допомогою рентгенівського

дифрактометра ДРОН-2.0 з використанням CuK_{α} випромінювання ($\lambda = 1.54184$ нм).

Спектри поглинання і відбивання реєструвалися з використанням спектрофотометра Cary-500 і ІК-Фур'є спектрометра Nexus (Thermo Nicolet, США). У випадку скляних і кварцових підкладок використовувалася методика дзеркального відбивання під кутами 20 і 80 градусів. У всіх інших випадках реєструвалися спектри поглинання.

III. Топологія наноструктур та оптичні властивості

3.1. Процеси структуроутворення. Встановлено, що плівки РbTe на кремнієвих підкладках гладкі і однорідні, а текстура їх поверхні повторює рельєф поверхні підкладки (рис.1,а). Впливу VMOB приготування на структуру конденсатів РbTe не виявили. Плівки PbTe на германієвих підкладках мають пористу структуру (рис.1,б). При цьому структура поверхні визначається головним чином температурою осадження Т_п під час приготування і часом напилення t_н. Підвищення T_п під час напилення призводить до зменшення розміру пор, а при температурі Т_п =250 ° С спостерігається їх заростання. На скляних підкладках при низьких Т_п наноструктури PbTe являють собою шари мікрокристалів зростання у формі тонких пластинок досить правильної прямокутної форми субмікронних розмірів (рис.2,а). Збільшення Т_п веде до зростання їх

Рис.1. Мікрофотографії структур РbTe на Si-(a)і Ge-(б) підкладках. Тиск при напиленні $<6x10^{-5}$ мм рт. ст. $T_{\pi} = 50^{\circ}$ C, $t_{\mu} = 15$ хв.

розмірів з (0,5-1,5)мкм до (5-10) мкм. При $T_{\pi} \approx 200^{\circ}$ С краї цих пластинок сплавляються, а їх контури втрачають прямокутну форму (рис.2,b).

Характерною рисою конденсатів PbTe на слюдяній підкладці є те, що мікрокристали зростання являють собою шари щільноупакованих тригранних пірамід (рис.3,b). Розміри цих пірамід слабо варіюються зі зміною тиску в камері і часу напилення, в той час як невелике (~70°C) зменшення температури поверхні підкладки призводить до погіршення упаковки та їх орієнтації (рис.3,а).

Структура конденсатів PbTe на підкладках, покритих оксидними гель-плівками знаходиться в сильній залежності від T_n . Так при $T_n = 150^{\circ}$ С халькогенідна плівка являє собою шари хаотично розміщених прямокутних пластинок з розмірами істотно меншими 1 мкм, серед яких зустрічаються окремі пірамідальні мікрокристали (рис.4,а), а при T_n = 200°С концентрація і розмір останніх значно збільшуються (рис.4,b).

При аналогічній температурі ($T_n = 200^\circ$ C) і тривалості осадження плівки РbTе на кварцових підкладках, покритих GeO₂ гель-плівкою, являють собою систему шарів тонких мікропластин правильної прямокутної форми і розмірами порядку (0,5-0,7) мкм (рис.5,b). Зниження T_n до 150°C призводить до значного зменшення розмірів пластин і формуванню відносно невеликої частки субмікронних (~ 0.2 мкм) частинок пірамідальної форми (рис.5,а).

Рис.2. Мікрофотографії структур РbTe на скляній підкладці: $T_{\pi} = 140^{\circ}C$ (a) і 225°C (b), $t_{\mu} = 10$ хв.

Рис.3. Мікрофотографії структур РbTе на слюдяній підкладці: $T_{\pi} = 80^{\circ}C$ (a) і 156°C (b), $t_{\mu} = 10$ хв.

Рис.5. Мікрофотографії структур РbTе на кварцових підкладках з гель-плівкою GeO₂: $T_{\pi} = 150^{\circ}C$ (a) і 200°C (b), $t_{\mu} = 90$ хв.

Рис.4. Мікрофотографії структур РbTe на кварцових підкладках із гель-плівкою SiO₂: $T_{\pi} = 150^{\circ}C$ (a) і 200°C (b), $t_{\mu} = 90$ хв.

Рис.6. Мікрофотографії структур РbTe на кварцових підкладках з гель-плівкою HfO₂: $T_{\pi} = 150^{\circ}C$ (a) і 200°C (b), _{th} = 90 хв.

Рис.7. Мікрофотографії гель-плівки SiO₂-10Eu₂O₃-10Ag (a) і осадженого на неї PbTe: $T_{\pi} = 150^{\circ}C$ (б) і $T_{\pi} = 200^{\circ}C$ (в).

Рис.8. Спектри IЧ-поглинання структур PbTe, осаджених на германієві (а) і слюдяні (b) підкладки, а також спектри IЧ-відбивання (c) структур PbTe на кварцевих підкладках, покритих: $1 - \text{SiO}_2$, $2 - \text{GeO}_2$, $3 - \text{HfO}_2$ гельплівками. а: T_n : 50°C (1), 150°C (2), 200 (3) і 250°C (4), $t_n = 15$ хв.; b: T_n : 80°C (2) и 156°C (1), $t_n = 10$ хв.; c: $T_n = 200^\circ\text{C}$, $t_n = 90$ хв.

Для структур PbTe на кварцових підкладках, покритих гель-плівкою HfO₂, при $T_n = 150^{\circ}$ C поверхня конденсату являє собою систему мікрокристалів у вигляді чотиригранних пірамід (рис.6,а). При $T_n = 200^{\circ}$ C спостерігається значне зменшення розмірів цих мікрокристалів (рис.6,b).

При формуванні в оксидних гель-плівках наночастинок (Ag0)_n їх надмолекулярна структура істотно змінюється. Наприклад, для плівки РbTe, нанесеної на гель-плівку SiO₂ при T_п = 150°C, формуються пластинчасті мікрокристали зростання з розмірами істотно меншими 1 мкм і з невеликою часткою подовжених призматичних мікрокристалів (рис.7,а). Наявність в гель-плівці (Ag0)_n при ідентичній Т_п веде до помітного збільшення товщини і розміру пластинчастих мікрокристалів і відсутності призматичних мікрокристалів (рис.7,б). Вже при T_{π} = 200°С відмінності надмолекулярної структури практично зникають, а мікрокристали набувають пірамідальну форму (рис.7,в).

3.2.Оптичні властивості. Спектри ІЧ-поглинання плівок РbTe на германієвій підкладці показують, що з підвищенням при напиленні Tп має місце тенденція збільшення інтенсивності і зниження крутизни низькочастотного краю міжзонного поглинання (рис.8,а). Одночасно має місце також і зсув цього краю в низькочастотну область спектру. Для структур PbTe на слюдяних підкладках із підвищенням T_n також спостерігається збільшення інтенсивності низькочастотного краю міжзонного поглинання (рис.8,а).

Що стосується спектрів відбивання плівок РbTe на кварцових підкладках, покритих оксидними гельплівками, то вони практично не залежать від природи останніх, за винятком області при $v \approx 1250$ см⁻¹ (рис.8,с).

3.3. Обговорення результатів. Аналіз викладених результатів, а також фізичних властивостей підкладок і гель-плівок (табл.1)

Таблиця 1

Матеріал	Тепло- провідність, Вт/м-К (Т, К)	Питома теплоємність, Дж/г-К (Т, К)	Діелектри-чна стала (Т, К)	Стала гратки, Å	Кристалі- чна структура
PbTe	7 (100)	0.15 (240)	380 (300)	6.46	Кубічна
Si	167 (273.15)	0.80 (400)	11.8	5.4	Кубічна
Ge	60.3 (273.15)	0.34 (400)	16.0	5.7	Кубічна
Скло	~0.9 (373.15)	0.89 (293)	3.80	-	-
Слюда	0.24	0.88 (293)	6.00 - 6.60	-	-
SiO ₂	1.5 (400)	0.89 (400)	3.70 - 6.00	-	-
GeO ₂	5.36 (400)	0.45 (400)	-	-	-
HfO ₂	2.5 (400)	0.32 (400)	-	-	-

Фізичні властивості РbTe, матеріалів підкладок і гель плівок [17-19]

свідчать, що два основні чинники мають ключовий вплив на морфологію поверхні та топологію наноструктур PbTe: температура підкладки T_n при осадженні пари і природа її матеріалу. При цьому чим нижче теплопровідність підкладки, тим кращі умови для формування мікрокристалів зростання (рис.1-6 і табл.1). Дійсно, на підкладці з найбільшою провідністю (Si-підкладка) зростання мікрокристалів PbTe взагалі не спостерігаються, а на підкладці з найменшою провідністю (слюда) процес формування цих мікрокристалів виявляє найбільшу чутливість до величини T_n .

Тут слід зазначити, що теплопровідність SiO₂ збільшується i3 зростанням температури, а теплопровідність HfO₂, навпаки, зменшується [18]. Така «температурна поведінка» цього параметра корелює із особливостями зростання мікрокристалів РьТе на кварцових підкладках, покритих гельплівками SiO₂ і HfO₂, що свідчить на користь ключової ролі теплопровідності підкладки на процес зростання формування наноструктур. Як можна бачити з порівняння рис.4 та рис.6, більші мікрокристали спостерігаються при зменшенні Т_п для підкладки з плівкою SiO₂ і збільшенні температури Тп для підкладки з плівкою HfO2. Цей факт також підтверджує істотний вплив теплопровідності на зростання мікрокристалів РbTe. Цікаво відзначити, що навіть гель-плівки з товщиною ~ 1 мкм здатні впливати на мікроструктуру конденсатів РbTe. Однак введення в гель-плівки наночастинок срібла, що підвищують теплопровідність, не призвело до згладжування поверхні нанесеного на них конденсату PbTe.

Структурні зміни у наноструктурах PbTe відображаються на їх спектральних оптичних властивостях. Тут, найбільш цікавим результатом є те, що крутизна краю смуги міжзонного поглинання конденсату з нормальними до її поверхні розташуванням мікрокристалів набагато вища, ніж структур PbTe, для яких частина цих мікрокристалів розташована паралельно поверхні. Така зміна крутизни спектральної смуги залежно від орієнтації мікрокристалів зростання можна пояснити анізотропією коефіцієнта поглинання останніх.

IV. Вплив імпульсного і стаціонарного розігріву на структуру, склад і спектроскопічні властивості

В експерименті використовувалися плівки РbTе на скляних і германієвих підкладках. Імпульсний нагрів здійснювався випромінюванням другої гармоніки моноімпульсного лазера на основі натрійалюмінієвих граната з йонами неодиму ($\lambda = 532$ нм). Стаціонарний нагрів здійснювався шляхом розміщення зазначених плівок в піч опору, розігріту до необхідної температури.

Встановлено, що при опроміненні конденсатів РbTе на скляній підкладці одиночним лазерним моноімпульсом з щільністю потужності Р ≥ 20 мДж/мм² відбувається розплавлення мікрокристалів зростання і аморфізація опромінюваної поверхні (рис.9). Температура підкладки при осадженні пари становила Tп =250°C, а товщина плівки - 10 мкм. Слід зазначити, що для плівок РdTе товщиною ~ 0,1 мкм випромінювання з Р ~ 15 мДж/мм² викликає їх повне випаровування.

Спектри відбивання цієї ж плівки PbTe, зняті до та після опромінення одиночним моноімпульсом з Р $\approx 50 \text{ мДж/мм}^2$ (рис.10) дозволяють стверджувати, що із зменшенням v від 4000 см⁻¹ до 2500 см⁻¹ для опроміненої плівки (рис.10-крива 2) спостерігається помітне зниження відбивання. Однак в низькочастотній області (600 – 2500)см⁻¹ хід спектральної кривої маскується інтерференцією. Тим не менш, очевидно, що відбивання опроміненої плівки там також нижче [4].

Мікрофотографії структур РbTe на скляній підкладці при $T_n = 60^{\circ}$ С товщиною 0,1 мкм до і після стаціонарного нагріву при різній температурі протягом 3 хв. істотно розрізняються (рис.11). Видно, що до нагрівання структура являє собою агломерати округлої форми розміром ~ 0,5 мкм з великим числом порожнин між ними розміром у кілька сотень нм (рис.11,а). Розмір окремого «зерна» в цих агломератах складає ~ 10 нм. Після прогріву при

Морфологія поверхні та оптичні властивості наноструктур...

1/10 довжини малюнка = 100 мкм

Рис. 9. Мікрофотографії структур РbTe на склі товщиною 10 мкм, опроміненою одиночним моноімпульсом $P \approx 20 \text{ i } 50 \text{ мДж/мм}^2$ для (а) і (б) відповідно.

Рис. 10. Спектри відбивання структур РbTе товщиною 10 мкм на склі до (1) і після (2) опромінення одиночним моноімпульсом.

Рис. 11. Мікрофотографії структур РbTе товщиною 0,1 мкм на скляній підкладці до (а) і після (б-г) стаціонарного прогріву протягом 3 хв. Температура прогріву Т, °C: 300 (б), 350 (в) і 400 (г).

T = 300°C розміри агломератів і порожнин у багато разів зменшується при практично незмінному розмірі індивідуальних «зерен» (рис.11,б). Збільшення температури прогріву до 350°C веде до появи великої кількості кристалічних утворень з розмірами від 100 нм до 500 нм (рис.11,в). Вже при температурі прогріву 400°C ці нанокристали набувають округлу форму, що свідчить про початок їх оплавлення (рис.11,г) При цьому дещо зростають і розміри індивідуальних «зерен».

Описана температурна зміна структури конденсатів значно впливає і на її спектри оптичного відбивання. Причому зміна останнього, що дивно, має немонотонний характер (рис.12). Так, для вихідної структури мінімум пропускання лежить при $v \approx 3560$ см–1 (рис.12-крива 1), після її нагрівання до T = 300°C і 350°C він зміщується у високочастотну

Рис.12. Спектри відбивання структур РbTе товщиною 0,1 мкм на склі до (1) і після (2-4) термообробки протягом 3 хв.

Рис. 13. Відносні концентрації атомів Pb і Te у вихідній плівці PbTe (а) і прогрітій при T = 300°C (б).

Рис.14. Відносні концентрації атомів Pb і Te у плівці PbTe прогрітій при T = 350°C (а) и 400°C (б).

сторону до $v \approx 3950$ см-1 та 4210 см-1 (рис.12-криві 2 і 3 відповідно), а після нагрівання до $T = 400^{\circ}$ С в низькочастотну до 3180 см-1 (рис.12-крива 4). Це свідчить про аналогічні зміщення краю міжзонного поглинання PbTe. Причому його крутість зменшується при зсуві максимуму поглинання в високочастотну сторону і збільшується при зсуві в низькочастотну.

3 метою пошуку причини спостережуваного немонотонного зміщення краю міжзонного поглинання структур РbTe в результаті їх відпалу проаналізовано зміну було атомарного співвідношення Рь / Те. Як виявилося, воно задовільно корелює з характером описаного зміщення краю міжзонного поглинання збільшуючись при зсуві в високочастотну сторону і зменшуючись при зсуві у зворотному напрямку (рис.13 і 14). При цьому зміни фазового складу відпалених плівок не виявлено - при всіх

температурах вони зберігають кубічну структуру з текстурою [100].

Принципових відмінностей в поведінці надмолекулярної структури і спектрів відбивання аналогічних плівок на германієвих підкладках під впливом імпульсного і стаціонарного нагріву не виявлено.

Таким чином, опромінення лазерними моноімпульсами структур РbTe дає можливість створювати локальні оплавлені ділянки (очевидно, аж до квантових точок), а стаціонарний нагрів цих структур - змінювати положенням краю міжзонного поглинання PbTe і його крутизною.

Висновки

1.Встановлено, що особливості морфології поверхні та формування топології парофазних наноструктур РbTe на підкладках монокристалів

(111) Si, (111) Ge, (0001) слюди, а також полірованого скла, плавленого кварцу, покритого SiO₂, GeO₂ і HfO₂ гель плівками без і з наночастинками Ag і Au зумовлені головним чином відмінностями у теплофізичних властивостях цих підкладках.

2. Експериментально встановлено істотну відмінність надмолекулярної структури конденсатів РbTe, осаджених на гель-плівки SiO₂, GeO₂, HfO₂ на кварцовій підкладці. Виявлена кореляція зміни цієї структури з ходом температурної залежності теплопровідності гель-плівок. Показано, що наявність в гель-плівці SiO₂ наночасток срібла надмолекулярну помітно змінює структуру осаджених структур РbTe при невисокій (~150°С) температурі підкладки.

3. Показано, що опромінення лазерними моноімпульсами плівок РbTe дозволяє створювати локальні оплавлені ділянки, а в результаті стаціонарного нагріву цих плівок можливо значний зсув краю міжзонного поглинання, яке корелює з величиною атомарного співвідношення Pb / Te. Причому крутість цього краю зменшується при зсуві максимуму поглинання в високочастотну область і збільшується при зсуві в низькочастотну.

4. Виявлені радикальні зміни морфології поверхні топології нанокристалітів у плівках РbTe в залежності від природи підкладки та її температури при осадженні конденсатів, а також від теплового впливу при експлуатації видається важливим як для області традиційного використання подібних матеріалів y термодатчиках, детекторах ІЧвипромінювання та лазерах терагерцового діапазону, так і вказує на можливий шлях для варіювання їх характеристик.

Робота виконана у рамках наукових проектів МОН України (державний реєстраційний номер 01134000185) та ДФФД України (проекти №Ф54; Ф53.3).

Малашкевич Г.Е. – доктор фізико-математичних наук, професор; *Фреїк Д.М.* – заслужений діяч науки і техніки України, доктор хімічних наук, професор, директор Фізико-хімічного інституту, завідувач кафедри фізики і хімії твердого тіла; Межиловська Л.Й. – кандидат фізико-математичних наук, доцент, *Яворський Я С* – аспірант;

- [1] N.H. Abrikosov, L.E. Shelimova. Poluprovodnikovye materiali na osnove soedinenij AIVBVI (Nauka, Moskva, 1975).
- [2] V.N. Shperun, D.M. Freïk, R.I. Zapuhljak. Termoelektrika teluridu svincju ta jogo analogiv (Plaj, Ivano-Frankivs'k, 2000).
- [3] D.M. Freik, M.A. Galushhak, L.I. Mezhilovskaja. Fizika i tehnologija poluprovodnikovyh plenok (Vishha shkola, L'viv, 1988).
- [4] S.P. Zimin, E.S. Gorlachev. Nanostrukturirovanye hal'kogenidy svinca: monografija (Jarosl. gos. un-t im. P. G. Demidova, Jaroslavl': JarGU, 2011)
- [5] G. Springholz, V. Holy, M. Pinczolits, G. Bauer. Science, 282, 734 (1998).
- [6] S.O. Ferreira, B.R.A. Neves, R. Magalhaes-Paniago, A. Malachias, P. H.O. Rappl, A.Y. Ueta, E. Abramof, M. S. Andrade. J. Cryst. Growth. 231(1–2), 121 (2001).
- [7] K. Alchalabi, D. Zimin, G. Kostorz, H. Zogg. Phys. Rev. Lett. 90(2), 026104 (2003).
- [8] V. N. Vodop'janov, A.P. Bahtinov, E.I. Slyn'ko, G. V. Lashkarev, V.M. Radchenko, P.M. Litvin, O. S. Pis'ma v ZhTF 31(16), 88 (2005).
- [9] D.M. Freïk, I.K. Jurchishin, M.O. Galushhak, Ja.S. Javors'kij, Ju.V. Lisjuk. Zhurnal nano- ta elektronnoï fiziki 4(2), 02019-1 (2012).
- [10] D.M. Freïk, I.K. Jurchishin, Ju.V. Lisjuk. Fizika i himija tverdogo tila 12(2), 350 (2011).
- [11] D.M. Freïk, I.M. Lishhins'kij, P.M. Litvin, V.V. Bachuk. Fizika i himija tverdogo tila 9(4), 529 (2008).
- [12] D.M.Freïk, P.M. Litvin, I.I. Chav'jak, I.M. Lishhins'kij, V.V. Bachuk. Fizika i himija tverdogo tila 10(4), 789 (2009)
- [13] V.V. Bachuk. Fizika i himija tverdogo tila 13(1), 88 (2012).
- [14] D.M. Freïk, Ja.P. Salij, I.M. Lishhins'kij, V.V. Bachuk, N.Ja. Stefaniv. Zhurnal Nano- ta Elektronnoï Fiziki 4(2), 02012-1 (2012).
- [15] Ja.P. Salij, V.V. Bachuk, D.M. Freik, I.M.Lishhins'kij. Fizika i himija tverdogo tila, 13(2), 379 (2012),
- [16] D.M. Freïk, Ja.S. Javors'kij, I.S. Bilina, P.M. Litvin, I.M. Lishhins'kij, V.B. Marusjak. Fizika i himija tverdogo tila 13(4), 934 (2012).
- [17] Tablicy fizicheskih velichin. Spravochnik / Pod red. Kikoina I.K (Atomizdat, Moskva, 1976).
- [18] Teplofizicheskie svojstva nemetallicheskih materialov. Okisly: Spravochnaja kniga / R. E. Krzhizhanovskij [i dr.] (Jenergija, Leningrad, 1973).
- [19] Svojstva stekol i stekloobrazujushhih rasplavov. Spravochnik. T. 5/ O.V. Mazurin [i dr.] (Nauka, Leningrad, 1987).

G.E. Malashkevych¹, L.Yo. Mezhylovska², D.M. Freik², Ya.S. Yavorskiy³

Surface Morphology and Optical Properties of Nanostructures Based on PbTe

¹Molecular and Atomic Physics Institute of NASB Belarus 220072, Minsk, Independence Avenue 70, Belarus, E-mail: <u>malash@imaph.bas-net.by</u> ²Prykarpatskyy National University V.Stefanyk, Shevchenko str., 57, Ivano-Frankivsk, 76000, Ukraine, E-mail: <u>freik@pu.if.ua</u>

The processes of growth, topology, and spectral characteristics of vapor-phase nanostructures PbTe on single crystal ((001) mica-muscovite, (111) silicon, (111) germanium) substrates and polished glass and fused quartz plates which is coated gel films have been studied. The effect of impulse and stationary heating change their structural composition and spectroscopic properties have been found. The changes slope edge of the inter band absorption of nanostructures which is based on the degree of lead telluride orientation and crystallite size as well as the temperature and duration of heat treatment have been determined.

Keywords: Lead telluride, nanostructures, topology and optical properties.