УДК 021.315.592

ISSN 1729-4428

Я.С. Яворський

Процеси структуроутворення у парофазних конденсатах PbTe:Sb на ситалі

Прикарпатський національний університет імені Василя Стефаника, вул. Шевченка, 57, Івано-Франківськ, 76000, Україна, Е-mail: <u>freik@pu.if.ua</u>

Представлено результати ACM-дослідження процесів структуроутворення у конденсатах PbTe:Sb/ситал, отриманих відкритим випаровуванням у вакуумі при температурах осадження T_{Π} =(150-250) °C і часі осадження $\tau = (15-240)$ с. Показано, що домінуючим є механізм зародження Фольмера-Вебера, а процес росту наноутворень пояснено у наближенні оствальдівського дозрівання, у якому переважають дифузійні кінетичні процеси. У ряді випадків сформовані наноструктури PbTe:Sb представляють собою тригональні піраміди із гранями {100} і основою (111), яка паралельна до поверхні підкладки.

Ключові слова: наноструктури, парофазні методи, плюмбум телурид, процеси росту, оствальдівське дозрівання.

Стаття поступила до редакції 12.11.2013; прийнята до друку 15.01.2013.

Вступ

Тонкі плівки і низькорозмірні конденсати халькогенідів перспективними свинцю € напівпровідниковими структурами для створення на основі активних ïx елементів мікроi наноелектроніки (детектори i джерела випромінювання в інфрачервоній області оптичного спектру та термоелектричних перетворювачів енергії для температур (500-850)К) [1,2]. Робочі характеристики таких приладових структур визначаються В значній мірі структурним станом, морфологічними особливостями та топологією цих конденсатів [3-6].

Відомо також, що в області малих товщин мають місце квантово-розмірні ефекти, які зумовлені зміною енергетичної структури, що впливає суттєво як на електронну, так і на фононну підсистеми [7,8].

Що стосується парофазних конденсатів, отриманих методами молекулярно-променевої епітаксії [3,5], «гарячої стінки» [6,9], газодинамічного потоку пари [10,11] чи відкритого випаровування [12,13], то тут важливими є питання, пов'язані із процесами самоорганізації.

У роботі, яка є логічним продовженням наших попередніх досліджень [9,14], представлено результати вивчення процесів структуроутворення у парофазних конденсатах плюмбум телуриду, легованого сурмою PbTe:Sb на ситалі.

I. Методика експерименту

Тонкі плівки і наноструктури отримували з парової фази методом відкритого випаровування у вакуумі наперед синтезованої сполуки PbTe:Sb із вмістом сурми 0,25 ат.% на підкладках із ситалу. Температура випарника складала Т_В=700 °С, а конденсації Т_п=(150-250) °С. Товщину конденсату задавали часом осадження пари від 15 с до 240 с. та вимірювали за допомогою мікроінтерферометра МИИ-4. Значення технологічних факторів наведені у таблиці 1. Топологічні особливості наноструктур у конденсатах досліджували методами атомно-силової мікроскопії (ACM) Nanoscope 3a Dimention 3000 (Digital Instruments USA) в Інституті фізики напівпровідників ім. В.Є. Лашкарьова НАНУ (м. Київ). Вимірювання проведені України центральній частині зразків із використанням серійних кремнієвих зондів NSG-11 із номінальним радіусом заокруглення вістря до 10 нм (NT0MDT, Росія). За результатами АСМ-досліджень крім топології поверхні та її профілограм у програмі визначено розміри нанокристалів, Gwyddion шорсткість та інші характеристики конденсатів (табл. 2, рис. 1-рис. 8).

Таблиця 1.

Технологічні фактори осадження на підкладки із ситалу парофазних конденсатів PbTe:Sb у відкритому вакуумі. Температура випаровування $T_{\rm B} = 700$ °C.

1 _B /00 C.			
N⁰	Температура	Час	
зразка	підкладки,	осадження	
	Тп, ⁰С	τ, c	
8	200	15	
9	200	30	
10	200	40	
11	200	50	
12	200	60	
13	200	90	
14	200	120	
15	200	150	
16	200	210	
17	200	240	
18	250	15	
19	150	15	
20	250	60	
21	150	60	
22	250	240	
23	150	240	
24	250	120	
25	150	120	

II. Результати дослідження та їх аналіз

Важливими факторами, що визначають топологію наноструктур є температура T_{Π} та час осадження т (рис. 1 – рис. 3). Так, зокрема, із підвищенням температури осадження від T_{Π} =150 °C до T_{Π} =250 °C має місце суттєве збільшення середніх латеральних розмірів наноутворень від ~20 нм (рис.1,I - а) до ~80 нм (рис.1,I - в) відповідно при часі осадження $\tau = 60$ с (рис. 4,6).

Для тривалого часу осадження ($\tau = 240$ с) ці зміни більш суттєві: розміри нанокристалітів збільшуються від 100 нм до 200 нм (рис.2; рис 4, в). Що стосується максимальних значень латеральних розмірів то для $\tau = 60$ с вони сягають до ~ 130 нм і ~ 400 нм для τ = 240 с (рис. 4 – б, в). Характер зміни висоти наноструктур $h_{max}(h_c)$ від температур осадження T_{Π} залежить від часу осадження пари (рис.1, рис.2, рис.5 - б,в). Так, зокрема якщо для $\tau = 60$ с їх значення зростають у межах ((10-200) нм рис. 5, б), то для $\tau = 240$ с виявлена тенденція до зменшення цих висот від 400 нм до 200 нм для h_{max} і від 200 нм до 50 нм для h_c (рис. 5,в) відповідно. Цим тенденціям зміни висот (рис. 5 – б,в) відповідає характер залежності середньої R_a і середньоквадратичної R_q шорсткості: зростання для $\tau = 60$ с (рис. 6,6) і зменшення для $\tau = 240$ с (рис. 6, в) відповідно.

Що стосується часу осадження τ , то він більш динамічно впливає на характер формування як топології окремих наноутворень, так і самого

Таблиця 2.

Основні топологічні параметри наноструктур PbTe:Sb, осаджених відкритим випаровуванням у вакуумі на підкладки із ситалу.

N⁰	Середнє	Максимальне	Середнє	Максимальне	Середня	Середня
зразка	значення	значення	значення	значення	шорсткість	KB.
	висоти	висоти	латеральних	латеральних	R _a , нм	шорсткість
	h _с , нм	h _{max} , нм	розмірів	розмірів		R _q , нм
			D _с , нм	D _m , нм		-
8	10	25	21	34	1,77	2,20
9	18	54	45	72	1,93	2,41
10	24	70	49	74	1,98	2,74
11	27	81	66	92	2,64	3,65
12	16	37	48	73	1,48	1,76
13	26	45	69	108	2,19	2,84
14	29	90	60	89	2,81	3,46
15	33	115	59	102	2,88	3,72
16	72	164	78	149	2,57	3,31
17	61	190	106	153	3,13	4,54
18	21	41	32	52	1,14	1,40
19	19	49	41	66	1,54	2,06
20	26	49	80	125	1,16	1,49
21	7	17	22	35	0,75	0,91
22	94	200	183	370	1,68	1,98
23	178	366	112	155	5,72	7,57
24	52	119	69	120	2,14	2,59
25	93	221	74	133	3,12	3,88

Рис.1. 3D і 2D ACM-зображення (I) та профілограми (II) конденсатів PbTe:Sb, отриманих на підкладках із ситалу при температурі осадження T_{Π} , °C: 150(№21)-а, 200(№12)-б, 250(№20)-в; $\tau = 60$ с, $T_B = 700$ °C.

Рис.2. 3D і 2D ACM-зображення (I) та профілограми (II) конденсатів PbTe:Sb, отриманих на підкладках із ситалу при температурі осадження T_{Π} , °C: 150(№23)-а, 200(№17)-б, 250(№22)-в; $\tau = 240$ с, $T_{B} = 700$ °C.

Рис.3. 3D і 2D ACM-зображення (I) та профілограми (II) конденсатів PbTe:Sb, отриманих на підкладках із ситалу при різному часі осадження τ ,с: 15с (№8)-а, 40с (№10)-б, 90с (№13)-в, 210с (№16)-г; $T_B = 700$ °C, $T_{\Pi} = 200$ °C.

Рис. 4. Залежність максимальних $(D_m - 1)$ і середніх $(D_c - 2)$ латеральних розмірів наноструктур конденсатів PbTe:Sb/ситал від часу осадження $(\tau - a)$ $(T_B = 700 \ ^\circ\text{C}; T_\Pi = 200 \ ^\circ\text{C})$ та температури осадження $(T_\Pi - \delta, B)$ за часу осадження τ , с: 60(б), 240(в); при температурі випарування $T_B = 700 \ ^\circ\text{C}$.

рельєфу поверхні (рис. 3). У досліджуваному часовому проміжку чітко проявляється чотири інтервали, що відповідають часу до 15 с (τ_1); $\tau_2 = (15-$ 60) с, $\tau_3 = (60-90)$ с і $\tau_4 = (90-240)$ с (рис. 4,а; рис. 5,а) Якщо на початкових етапах осадження (т₁) формуються однорідні наноутворення стовпчастої форми висотою (5-20) нм і латеральними розмірами (20-30) HM ($T_{\Pi} = 200$ °C, $T_{B} = 700$ °C (puc. 3 – a, рис. 4 – а, рис. 5 - а), то при подальшому осадженні поверхнава густина наночасток пари $(\tau_2),$ зменшується, а їх розміри зростають (рис. 3-б; рис. 4 – а, рис. 5 - а). У третьому часовому інтервалі осадження (т₃) має місце формування однорідних окремих огранених тригональних структур значних

Рис. 5. Залежність максимальних (h_m – 1) і середніх (h_c – 2) висот наноструктур на поверхні конденсатів PbTe:Sb/ситал від часу осадження (τ – а) (T_B = 700 °C; T_{II} = 200 °C) та температури осадження (T_{II} – б,в) за часу осадження τ , с: 60(б), 240(в); при температурі випарування T_B= 700 °C.

розмірів: висота до ~ 45 нм; латеральні розміри до ~ 108 нм (рис. 3 – в; рис. 4-а, рис 5-а;табл. 2).

Четвертий часовий інтервал τ_4 осадження пари є відповідальним за зростання знову окремих нанокристалітів (рис. 3,г) до значних як латеральних розмірів ~ 140 нм (рис. 4,а), так і за висотою ~ 180 нм (рис. 5, а).

Таке поетапне часове формування наноструктур пов'язане із пошаровим їх ростом, яке супроводжується процесами нуклеації, агрегування та подальшому росту нанокристалітів.

Тепер відносно інших характеристик отриманих наноструктур: середня шорсткість поверхні конденсату адекватно змінюється із розмірами наноутворень і знаходиться в межах (1,7-4,20) нм із

Рис. 6. Залежність середньої $(R_a - 1)$ і середньоквадратичної $(R_q - 2)$ шорсткості конденсатів PbTe:Sb/ситал від часу осадження $\tau(a)$ ($T_B = 700$ °C; $T_\Pi = 200$ °C) та температури осадження ($T_\Pi - 6$,в) за часів осадження τ , с: 60(б), 240(в); при температурі випарування $T_B = 700$ °C

тенденцією її збільшення при зростанні величини наноструктур (рис. 6,а; табл. 2).

Слід зауважити, що найбільш сформовану кристалографічну структуру мають окремі нанокристаліти, осаджені за умов $T_B=700$ °C, $T_{\Pi}=150$ °C, $\tau = 240$ с (рис. 2, а). Окремі нанокристаліти мають класичну пірамідальну форму із бічними гранями {100} і основою {111}. Відзначений орієнтаційний характер наноструктур підтверджується гістограмами розподілу нахилів кутів (рис. 7). Така форма нанокристалів відповідає мінімальній вільній поверхневій енергії, яка є характерною для кристалів сполук IV-VI із структурою типу NaCl.

Залежності латеральних розмірів (D_m, D_c) нанокристалітів та їх висот (h_m, h_c) на поверхні структур PbTe/ситал можна проінтерпретувати з позицій реалізації оствальдівського дозрівання [15]. Так, згідно теоріїї закладені у роботах Оствальда

Рис. 7. 2D АСМ-зображення наноструктури PbTe:Sb/ситал (T_B =700 °C, T_Π =250 °C, τ =240 с.) (а) та її гістограма розподілу нахилів за кутами (б).

Рис. 8. Залежності відношення максимальних D_m до середніх D_c значень латеральних розмірів нанокристалів D_m/D_c у парофазних конденсатах PbTe:Sb/ситал від: а – часу осадження τ ,c; б – температури осадження T_{Π} для часу осадження τ ,c: 1 – 15, 2 – 60, 3 – 180, 4 – 240.

[15], Ліфшица і Сльозова [16], Вагнера [17], Венгреновича [18] стосовно поверхневих дискретних і, зокрема, острівцевих систем плівок 1 напівпровідникових гетероструктур з квантовими точками, розрізняють дифузійний механізм росту кластерів і механізм, контрольований швидкістю утворення хімічних зв'язків на їх поверхні. Ці два процеси можуть конкурувати, тобто реалізовуватися одночасно за умови, якщо електронні процеси утворення хімічних зв'язків є активаційними і енергії активацій обох процесів – електронного i дифузійного порівняльні між собою. При цьому загальний потік ј адатомів буде дорівнювати сумі дифузійного j_o і вагнерівського (електронного)

 j_v потоків ($j = j_0 + j_u$). За умови, що

$$x = \frac{j_{\nu}}{j}, \ 1 - x = \frac{j_{i}}{j}, \ \frac{j_{\nu}}{j_{i}} = \frac{x}{1 - x},$$
 (1)

х буде визначати частку j_v у загальному потоці j_a , а $(1-x) - j_i$ у загальному потоці ј відповідно.

Згідно [18] відношення критичного радіусу r_k , який у рамках теорії ЛСВ співпадає з середнім радіусом кластера $r_k = \langle r \rangle$ до максимального розміру r_g пов'язане із часткою вагнерівського потоку x у загальному потоці співвідношенням

$$\frac{r_{g}}{r_{k}} = \frac{2+x}{1+x} \,. \tag{2}$$

При x=1 ріст кластерів повністю контролюється коефіцієнтом об'ємної дифузії

$$\frac{r_g}{r_k} = \frac{3}{2},$$
(3)

а при x=0, процес повністю контролюється кінетикою переходу через межу розділу кластерматриця, а це відношення буде рівне

$$\frac{r_g}{r_k} = 2.$$
 (4)

Із часових (т) і температурних (T_{Π}) залежностей розмірів наноструктур (рис. 4, рис. 5) видно, що за всіх всіх технологічних умов осадження парофазних конденсатів відношення максимальних латеральних D_m до їх середніх D_c значень знаходиться в межах 1,5 $\leq D_{max}/D_c < 2$ наближених до значень $D_m/D_c \approx 1,5$. Це вказує на домінування дифузійних механізмів формування нанокристалітів. Зауважимо, що утворення огранених зародків можливе при їх рості і коли лімітуючими є поверхнева дифузія адатомів, або ж дифузія у паровій фазі.

Висновки

- 1. Представлено результати АСМ-дослідження топологічних особливостей наноструктур РbTe:Sb/ситал, отриманих відкритим випаровуванням наважки синтезованої сполуки у відкритому вакуумі за різних технологічних факторів.
- 2. Показано, що підвищення температури осадження в інтервалі $T_{\Pi} = (150-250)$ °C за сталих значень температур випаровування $T_{B} = 700$ °C та часу осадження т сприяє росту більших за розмірами нанокристалітів як у латеральному, так і нормальному напрямках до підкладки.
- Встановлено, що час осадження конденсату складним чином впливає на характер формування топологічних особливостей: має має місце багатостадійний процес, який включає стадії нуклеації, агрегування та ріст окремих нанокристалітів.
- 4. Виявлено зміну характеру залежності шорсткості поверхні конденсатів від температури T_{Π} за різних часів осадження τ : зростання шорсткості при малих $\tau = (15-60)$ с і її зменшення при значних $\tau = (90-240)$ с відповідно.
- 5. На основі аналізу механізмів росту у представленні оствальдівського дозрівання встановлено домінування дифузійних процесів у формуванні наноструктур.

Автор висловлює щиру вдячність науковому керівнику проф. Фреїку Д.М за постановку задачі дослідження та обговорення результатів дослідження, доц. Литвину П.К., доц. Ліщинському І.М. за проведені АСМ-дослідження, а також асп. Биліні І.С. за допомогу при аналізі результатів АСМдосліджень.

Робота виконана згідно комплексного наукового проекту МОН України (державний реєстраційний номер 0113U000185) та проектів ДФФД Державного агенства з питань науки інновації та інформації України (Ф54, Ф 53.3).

Яворський Я.С. – аспірант.

- [1] D.M. Freik, M.A. Galushhak, L.I. Mezhilovskaja. Fizika i tehnologija poluprovodnikovyh plenok (Vishha shkola, L'viv, 1988).
- [2] S.P. Zimin. Nanostrukturirovanye hal'kogenidy svinca: monografija / S. P. Zimin, E. S. Gorlachev (Jarosl. gos. un-t im. P. G. Demidova, Jaroslavl': JarGU, 2011).
- [3] G. Springholz, V. Holy, M. Pinczolits, G. Bauer. Science, 282, 734 (1998).

- [4] S.O. Ferreira, B.R.A. Neves, R. Magalhaes-Paniago, A. Malachias, P.H.O. Rappl, A.Y. Ueta, E. Abramof, M.S. J. Cryst. Growth. 231(1–2), 121 (2001).
- [5] K. Alchalabi, D. Zimin, G. Kostorz, H. Zogg. Phys. Rev. Lett. 90(2), 026104 (2003).
- [6] V.N. Vodop'janov, A.P. Bahtinov, E.I. Slyn'ko, G.V. Lashkarev, V.M. Radchenko, P.M. Litvin, O.S. Litvin Pis'ma v ZhTF 31(16), 88 2005.
- [7] D.M. Freïk, I.K. Jurchishin, M.O. Galushhak, Ja.S. Javors'kij, Ju.V. Lisjuk. Zhurnal nano- ta elektronnoï fiziki 4(2), 02019-1 (2012).
- [8] D.M. Freïk, I.K. Jurchishin, Ju.V. Lisjuk. Fizika i himija tverdogo tila 12(2), 350 (2011).
- [9] D.M. Freïk, I.M. Lishhins'kij, P.M. Litvin, V.V. Bachuk. Fizika i himija tverdogo tila 9(4), 529 (2008).
- [10] D.M.Freïk, P.M. Litvin, I.I. Chav'jak, I.M. Lishhins'kij, V.V. Bachuk. Fizika i himija tverdogo tila 10(4), 789 (2009).
- [11] V.V. Bachuk. Fizika i himija tverdogo tila 13(1), 88 (2012).
- [12] D.M. Freïk, Ja.P. Salij, I.M. Lishhins'kij, V.V. Bachuk, N.Ja. Stefaniv. Zhurnal Nano- ta Elektronnoï Fiziki 4(2), 02012-1 (2012).
- [13] Ja.P. Salij, V.V. Bachuk, D.M. Freïk, I.M.Lishhins'kij. Fizika i himija tverdogo tila 13(2), 379 (2012).
- [14] D.M. Freïk, Ja.S. Javors'kij, I.S. Bilina, P.M. Litvin, I.M.Lishhins'kij, V.B. Marusjak. Fizika i himija tverdogo tila 13(4), 934 (2012).
- [15] W. Ostwald. Js. Physics Chemistry 34, 495 (1900).
- [16] .M. Lifshic, V.V. Sljozov. ZhJeTF 35(2), 479 (1958).
- [17] C. Wagner. Zs. Electrochem 65(7/8), 581 (1961).
- [18] R.D. Vengrenovich, B.V. Ivans'kij, A.V. Moskaljuk. Fizika i himija tverdogo tila 10(1), 19 (2009).

Ya.S. Yavorskyy

The Processes of Structure in Vapor-Phase Condensates PbTe:Sb at Sital

Vasyl Stefanyk PreCarpathian National University 57, Shevchenko Str., Ivano-Frankivsk, 76000, Ukraine, E-mail: <u>freik@pu.if.ua</u>

The results of AFM studies of processes of structure formation in condensates PbTe:Sb/Oxford, received open evaporation in vacuum at temperatures of deposition $T_P = (150-250)$ ° C and deposition time $\tau = (15-240)$ p. It is shown that the dominant mechanism is the origin Folmer-Weber, and the process of growth nanoformations explained in approaching ostvald maturation, which is dominated by diffusion kinetic processes. In some cases formed nanostructures PbTe: Sb represent trigonal pyramids with $\{100\}$ facets and the foundation (111) parallel to the substrate surface.

Keywords: nanostructures, vapor-phase methods of lead telluride, the processes of growth, maturation ostvald.