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Equilibrium states of one-dimensional ion conductor are investigated on the bases of the lattice model where 
ions are treated as Pauli particles. The frequency dependencies of single-particle spectral densities are calculated 
using exact diagonalization technique for the finite ion chain and diagrams of states are obtained analyzing the 
features of this spectra. The regions of existence of various phases are obtained. 
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Introduction 

An important problem of modern physics, which is 
of great interest from both experimentalists and theorists 
is to study phenomena in systems with ion and proton 
conductivity. Attention to these systems is paid due to 
ever-increasing possibilities of practical applications - as 
a solid electrolyte in capacitors and batteries, in 
membranes of fuel cells, in electronics, control and 
signalling [1] devices for special purposes. Therefore 
new compounds with high ionic conductivity were 
synthesized recently in order to find materials stable 
against chemical and mechanical action and with other 
specific properties. As an example, we can cite a series 
of lithium conductive materials synthesized from 
perovskit structures [2, 3, 4].  Just recently a new 
superionic crystal Li10GeP2S12 which conductivity 
reaches 12 mom-1cm-1 at room temperature and 0.41 

mom-1cm-1 even at o30 C−  is synthesized [5]  The 
conductivity of ionic conductors is particularly high 
when a number of ions is much less than a number of 
positions in a lattice, i.e. when there are vacancies. 
Therefore a lot of free positions facilitates ion hopping 
probability from one position to another. 

A special class of ionic conductors is represented by 
crystals, where charge carriers are hydrogen ions 
(protons). At low temperatures, they are ferroelectric or 
ferroelastic crystals, but at higher temperatures they 
undergo transition to superprotonic phase, while the 
conductivity is increased by several orders of magnitude 
(among others there are compounds of the general form 
MeHXO4, where M = Cs, Rb, NH4; X = S, Se). 
Numerous structural studies have shown that in low-
temperature phase the ions (protons) are clearly in the 
fixed positions, while in high-temperature phase they are 

distributed with equal probability between multiple 
positions in the unit cell. Lattice model are widely used 
for a theoretical description of ion and proton transport at 
the microscopic level. They are either based on Fermi 
statistics [6-10] or on "mixed" Pauli statistics [11-14], 
which particles are of Bose nature, but they also obey the 
Fermi rule. Charge transfer process in some superionics 
occurs along the chain (one-dimensional) structures. 
Examples are the proton conductor LiN2H5SO4 [15], 
some superionic (superprotonic) conductors, in particular 
CsHSO4 [16], coordination polymers like iron oxalate 
dihydrate Fe(C2O4) * 2H2O, nanotubes [17], etc. 

In this paper, we investigate the equilibrium states of 
one-dimensional ionic Pauli conductor based on the 
lattice model, which takes into account the ion hopping, 
internal modulating field and short-range interactions 
between ions. Particular attention is paid to the latter, 
because according to the experimental data [18] and 
quantum- chemical calculations [19, 20] the short-range 
interactions are important in real systems and largely 
determines their behavior.  Moreover, in the case of Pauli 
conductor the short-range interaction is responsible for 
the transition to the charge density wave (CDW)-state 
[21]. We investigate the transition from (CDW)-phase to 
the superfluid (SF)-like phase, which can be considered 
as analogue of superionic phase and to the Mott insulator 
(MI)-type phase. The calculations are performed using 
the exact diagonalization technique. Analyzing the ion 
single-particle spectral densities and their reconstruction 
at the change of concentration of 
ions, we get the state diagram of one-dimensional ionic 
conductor. 
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I. Single-particle spectral densities and 
regions of existence of the various 
phases 

In previous work [22] the expressions for the spectral 
densities in different phases were obtained within the 
random phase approximation in the framework of the 
two-sublattice hard-core boson model. Their calculations 
were performed and the shape of spectral densities in 
different phases was determined. In this paper the 
spectral density is calculated by exact diagonalization 
technique for one-dimensional ( d 1= ) chain structure. 
Diagrams of states are constructed basing on analysis of 
features of these spectra. We take into account the 
conclusions of studies [12, 13, 22, 23]. In particular, in 
determining the regions of existence of  various phases, 
we have used the fact that the important property of the 
spectral density in superfluid (SF) phase is the presence 
of negative branche (at 0ω < ), which merges 
continuously with the positive branches at the point 

0ω =  (see for example [22, 23]) where the chemical 
potential µ  is placed. It is consequence of fact, that in 

SF- phase (the phase with the Bose condensate) the 
chemical potential  goes into the Bose excited band. In 
contrast, in CDW-phase there is a gap beetwen negative 
and positive branches. Thus we have the splitting of the 
spectrum into two subbands and therefore modulated 
state with doubled lattice period. CDW-phase at 0T = , 
characterised by the half-filling, exists. The level of the 
chemical potential µ  is located in the middle of the gap 
between the two bands. In  Mott insulator state (MI) the 
commutator spectral density has branches with only one 
sign. The chemical potential is placed above (or below) 
the two bands [22]. Described above features can be seen 
in the Figure 1 where single-particle spectral density are 
obtained for different phases. 

II. Model and method (exact 
diagonalization approach) 

We consider of the one-dimensional ion conductor as 
the chain of heavy immobile ionic groups and light ions 
that move along this chain occupying certain positions. 
The subsystem of light ions is described with the 

  

  

Fig. 1. Boson single-particle spectral density for different phases of two-sublattice hard-core boson model of ionic 
conductor [22]. 
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following Hamiltonian 
 

 ˆ = ( ) ( 1) .1 1 1
iH t c c c c V n n n A ni i i i ii i ii i i i

µ+ ++ + − + −∑ ∑ ∑ ∑+ + +  (1) 

 

This model takes into account the nearest-neighbour 
ion transfer (with hopping parameter t ), interaction 
between ions that occupy nearest-neighbouring positions 
(with corresponding parameter V ) and modulating field 
(parameter A ). The system is divided into two 
sublattices under influence of the A  field, which 
simulates the long-range interactions between the 
particles, which contributes to the modulation of the 
spatial distribution of light ions in the so-called ordered 
phase (the existence of such phases at low temperatures 
is characteristic features of superionic conductors). In our 
case ci (ci

+) are Pauli operators. They describe the process 
of annihilation (creation) of ion in position i  therefore 

n c ci i i
+=  is the occupation number of protons in this 

position. In this case the model (1) is equivalent to the 
extended hard-core boson model, i.e. the boson Hubbard 
model with repulsive interaction between nearest 
neighbours and infinite on-site repulsion U → ∞ [24]. 

For the chain of N sites we introduce the many-
particle states 
 | , .1 2n n nN 〉K  (2) 

The Hamiltonian matrix on the basis of these states 
is the matrix of the order 2N* 2N. This matrix is 
diagonalized numerically 

 1 = = ,ppU HU H Xpp
λ− ∑% %  (3)  

where λp are eigenvalues of the Hamiltonian, ppX% are 
Hubbard operators. The same transformation is applied 
to the creation and annihilation operators 

1 1 *= , =pqi i rsU c U A X U c U A Xpq rsi ipq rs
− − +∑ ∑% %  (4) 

We construct single-particle Green's 

function |,G c ci i i i
+= , that contains information 

about single-particle energy spectrum of the system. For 
Pauli creation and annihilation operators this Green's 
function can be constructed in two ways, i.e. commutator 
Green's function 

( )
( ) | ( ) = ( ) [ ( ), ( )]

c
c t c t i t t c t c ti i i i

+ +′ ′ ′− Θ − 〈 〉  (5) 

and anticommutator Green's function 
( )

( ) | ( ) = ( ) { ( ), ( )} .
a

c t c t i t t c t c ti i i i
+ +′ ′ ′− Θ − 〈 〉  (6) 

Imaginary part of these Green's functions are the 
single-particle spectral densities 

 

 

 
1 1 1 *( ) = | = ,

=1 =1 ( )

p qN N e ej jIm c c Im A Apq pqj j pqij jN N Z iq p

βλ βλ
η

ρ ω
ω επ π ω λ λ ε

− −
−+− −∑ ∑ ∑

+ − − +

 
 
  

 (7) 

 

where = pZ e
p

βλ−
∑ . Spectral densities in (7), obtained 

from commutator 1η =  (5) and anticommutator 1η = −  
(6) Green's functions respectively, exhibit discrete 
structure. They consist of some number δ -peaks due to 
the finite size of a cluster (in our calculations the value 

10N =  was taken). Therefore we apply the periodic 
boundary conditions to the cluster and introduce small 
parameter ∆  to broaden the δ -peaks according to 

Lorentz distribution 
1

( ) 2 2δ ω
π ω

∆
→

+ ∆
 

III. Ion spectral densities and diagram of 
states 

We calculated the spectral density (7) in a wide 
range of values of the short-range interaction between the 
ions for different values of temperature and chemical 

potential. Experimental studies of some specific crystals 
[18, 25], and quantum-chemical calculations [19] make it 
possible to estimate the value of the correlation constant 

  3000 ... 10000V = cm-1, and the value of the transfer 
parameter   40 ... 2500t = cm-1. This shows that in real 
systems there is a strong correlation between ions, which 
has a significant impact on the structure and energy 
spectrum of the system. In our work we have chosen: 

/ 0,1, ...6V t = . In the following, we relate all energy 
parameter, including kT , to the hopping 
parameter t , which is taken as the energy unit. 

Analyzing the shape and topology of the calculated 
frequency- dependent spectral densities at different 
values of parameters of the model we built the 
corresponding state diagram. When constructing 
diagrams we have based on the discussed above features  
of the spectral density in a one or another phase (see the 
first chapter). 

When the modulating field A  is present, the 
neighboring positions become nonequivalent and lattice 
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is divided into two sublattices with the different ion 
occupancy. Modulating field extends CDW- phase 
region, whereas the SF phase region decreases. Here we 
present the phase diagrams at 0T = . Figure 2 shows the 
phase diagrams depending on the value of short-range 
interactions between ions V  and values of modulating 
field A . It is shown that in the case of the (µ',V) diagram 
the line of coexistance of SF and MI phases is straight 
(the value of the chemical potential at which the phase 
transition take place is proportional to V ). Unlike the 
previous case, in the (µ',A) diagram the line that 
separates the CDW and SF phase is  straight. 
For convenience we use the notation ' Vµ µ= − . 

The gap in the spectrum of CDW phase increases 
with the growth of both parameters V  and A. Expansion 
of the gap in the spectrum with increasing V  was 
obtained in previous studies, but this was done in the 
case of Fermi statistics, ie, for the spinless-fermion 
model [10, 26]. As a whole, the width of the region of 
CDW phase increases with increasing magnitude of the 
short-range interaction V  as well as the value of the 
modulating field A . When 0V =  its width is directly 
proportional to the strenght of modulating field A  (the 
lines separating the CDW and SF phases are of the form:  

' Aµ = +  and ' Aµ = − ). In this regard, the diagram in 
Figure 2 for 0V =  coincides with the exact diagram 
obtained analytically for the one-dimensional case (see 

[27]), where only the case 0V =  was considered. The 
exact analytical solution in this case was possible (the 
Jordan-Wigner transformation that transformes the hard-
core boson Hamiltonian into the non-interacting spinless-
fermion Hamiltonian for one-dimensional systems was 
used [28]). Similar studies were performed in the [12].  

Figure 3 shows the calculated commutator spectral 
density for some values of 'µ , which is related to 
different phases at 0T = . The level of chemical 
potential is placed in the 0ω =  point. The mean number 
n  for a given µ  was calculated according to the spectral 

theorem 
( )d

=
e 1
an

ρ ω ω
βω

∞
∫

−∞ +
, where aρ  - is the 

anticommutator spectral density (density of states). 
Figure 3 (c) refers to the CDW phase, 3 (b) - to the 

SF phase, when at 0ω =  negative branch of commutator 
spectral density merges into positive branch with no gaps 
between them. Figure 3 (a) corresponds the MI phase. 
Here chemical potential is placed below the bottom of 
the lower subband; commutator spectral density has only 
positive branch. We have shown that at 0T =   the CDW 
phase is realized only in the case of half-
filling( )1/ 2n = , and exists only in the point ' 0µ =  
when 0V =  and 0A = . When anybody of these 
parameters is different from zero, the region of CDW 

    
Fig. 2. Diagrams of state of one-dimensional ionic conductor in the (µ',V) and (µ',A) plains ( )0T = . 

 

 

  (a)         (b)                              (c) 

Fig. 3. Commutator single-particle spectral density of one-dimensional ionic conductor for different states at 0T = , 
4V = , 1A = , 1t = , 0, 25∆ = . The level of the chemical potential coincides with the point 0ω = . 
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phase becomes finite (in the 'µ  coordinates); for 
example, when 4V = , 0A = , we obtain: 

1, 8 ' 1, 8µ− < <  
At 0T ≠ , with increasing temperature CDW phase 

is eroded. We observe the effect of thermal transfer of 
the insulator- conductor type ( the analogue of the so-
called Mott transition ).  

The possibility of such an effect for objects that are 
studied in this work was shown in [29] and confirmed by 
numerical calculations [26] for the case when the 
particles are subjected to Fermi statistics. The effect can 
be illustrated by temperature changes of the single-
particle anticommutator spectral density (density of 
states ) (see Figure 4), calculated based on the formula 
(7). The gap in the spectrum( )0aρ = , which occurs at 

0T =  at half filling is associated with the charge-
ordered state. This is due to the repulsive short-range 
interactions between the particles, which forms  such 
type of the ground state of the system. At 0T ≠  
gap gradually closes. 

Conclusions 

The structure of the energy spectrum of one-
dimensional ionic conductor is determined by the 
interaction between the ions, their concentration and 

temperature. It is shown by the exact diagonalization 
method that at 0T =  the short-range repulsive 
interaction between ions leads to the splitting of the 
energy spectrum of one-dimensional ionic conductor and 
the appearance of the gap in the spectrum at the ionic 
concentration 1/ 2n = . At 0T ≠  a gap disappears 
gradually with increasing temperature. At 0T =  the 
CDW phase is present only in a half filled state. The 
width of the CDW phase region (as function of µ ) 
increases with the increase of magnitude of the short-
range interaction V  and the value of the modulating 
field A  ( the latter can be associated with an internal 
field arising from the long-range interactions). The gap in 
the spectrum of this phase also increases with increasing 
values of V  and A . Analyzing the single-particle 
spectral density ( )cρ ω , calculated numerically for the 
one-dimensional case, we obtain the boundaries of CDW, 
SF, MI phase regions  at 0T =  for different values of 
short-range interaction parameter and modulating field. 
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Досліджено рівноважні стани одновимірного іонного провідника на основі граткової моделі в якій 
іони трактуються як частинки Паулі. Методом точної діагоналізації розраховано частотну залежність 
одночастинкових спектральних густин для скінченних іонних ланцюжків. На основі аналізу цих спектрів 
отримано діаграми станів та встановлено області існування різних фаз. 
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