УДК 621.315.592

І.Д. Олексеюк, О.В. Марчук, О.В. Парасюк, В.В.Божко, В.В.Галян Фізико-хімічні та фізичні властивості стекол системи Cu₂Se - HgSe - GeSe₂

Волинський державний університет ім. Лесі Українки, 263009 Україна, м.Луцьк. пр.Волі 13, тел.(03322) 4-99-72

В даній роботі встановлено межі області склоутворення в квазіпотрійній системі Cu₂Se - HgSe - GeSe₂. Досліджено оптичне поглинання склоподібних напівпровідникових сплавів в межах 450 < λ (nm) < 2500.

Ключові слова: халькогенідні стекла, квазібінарна система, склоутворення, коефіцієнт поглинання, температурна деформація.

Стаття поступила до редакції 22.09.1999; прийнята до друку 15.10.1999

Останнім часом науковці і інженери все більший інтерес приділяють склоподібним напівпровідникам. Це пов'язано з тим, що ці матеріали знаходять широке практичне застосування в мікроелектроніці, а також є цікавими з теоретичної точки зору в плані дальшого розвитку теорії невпорядкованих конденсованих систем. До таких матеріалів відносяться халькогенідні стекла.

У квазібінарній системі HgSe - GeSe₂ при загартуванні від 1270 К, існує область склоутворення, що простягається до 54 мол. % HgSe. Одержані стекла володіють цікавим комплексом властивостей і є

Таблиця 1.

N⁰	(Склад мол.9	TV	TV	ти	ти	77	
п/п	GeSe ₂	HgSe	Cu ₂ Se	1 _g , К	I _с , К	Ι _m , Κ	I _{gr} , K	K _G
1	66,5	28,5	5	573	663	885	0,65	0,41
2	71	24	5	571	667	931	0,61	0,36
3	70	23	5	589	663	905	0,65	0,31
4	78	20	7	541	543	903	0,60	0,39
5	63	35	2	491	589	839	0,59	0,39
6	59	39	2	495	571	841	0,59	0,28
7	73	25	2	529	621	897	0,59	0,33
8	77	23	0	565	659	919	0,59	0,44
9	75	23	2	543	643	925	0,59	0,36
10	73	23	4	493	587	911	0,54	0,29
11	71	23	6	521	611	921	0,56	0,29

Фізико-хімічні властивості стекол системи Cu₂Se - HgSe - GeSe₂.

перспективними для практичного застосування [1]. З метою одержання нових склоподібних матеріалів, а також

Рис.1. Область склоутворення в системі Cu₂Se- HgSe - GeSe₂.

розширення спектру їх використання проведено дослідження величини області склоутворення і досліджено особливості краю поглинання стекол в квазіпотрійній системі Cu₂Se - HgSe - GeSe₂.

Синтез сплавів досліджуваної системи проводився за слідуючою методикою. Шихта компонувалася із елементів високого ступеня чистоти: Си – ОСЧ 11-4; Ge – ГМО-1; Se - ОСЧ 22-4, а також попередньо синтезованого HgSe (Hg – P-1). Ампули для синтезу виготовлялися із тонкостінного кварцу (0,5 мм) діаметром 10-12 MM. Компоновку шихти проводили з точністю 0,00005 грама на вагах ВЛР-200; загальна маса наважки становила 1 г. Для запобігання розбризгування розплаву процесі в гартування, а також для зменшення втрат на конденсацію парової фази стінками контейнера використовували термостатування шнуровим останнього азбестом. Синтез проводили однотемпературним методом. Вакуумовані ампули із шихтою нагрівалися із швидкістю 50 - 70 К/год до 1270 К. При цій температурі вони витримувалися 10 годин, після чого проводилося загартування в 25% водний розчин NaCl.

Скловидний стан сплавів контролювався рентгенофазовим (ДРОН 4-13, СиК_авипромінювання) та мікроструктурним

Рис. 2. Спектральний розподіл коефіцієнта поглинання стекол системи Cu₂Se - HgSe - GeSe₂, T=290 К (мол. % HgSe = const).

(мікроскоп ММУ-3) аналізами. Область склоутворення окреслювалася по сплавах, в яких вище наведеними методами не було виявлено присутності кристалічних включень. Одержані стекла представляють собою монолітні блоки чорного кольору. Визначення характеристичних температур (T_g, T_c, T_m - температура розм'якшення, кристалізації та плавлення відповідно) проводилося на установці типу "Термодент" з використанням блоку підсилення сигналу термопари. Запис кривих нагрівання і

Рис. 3. Спектральний розподіл коефіцієнта поглинання стекол системи Cu_2Se - HgSe - GeSe₂, T=290 К (мол. % Cu_2Se = const).

Рис. 4. Спектральний розподіл коефіцієнта поглинання стекол системи Cu_2Se - HgSe - GeSe₂, T=77 K (мол. % Hg Se = const).

охолодження здійснювався за допомогою двохкоординатного самописця ПДА-1.

область існування стекол. Область витягнута вздовж сторони HgSe-GeSe₂. Максимальна кількість Cu₂Se яку вдалось ввести в склад скла, становить 7 мол. %

За результатами дослідження 44 сплавів в системі Cu₂Se-HgSe-GeSe₂ встановлено

Рис. 5. Спектральний розподіл коефіцієнта поглинання стекол системи Cu₂Se - HgSe - GeSe₂, $T=77 \text{ K} \pmod{9} \text{ Cu}_2\text{Se} = \text{const}.$

E_g(eB)

Рис. 6. Залежність енергії оптичної іонізації від складу стекол системи Cu₂Se - HgSe - GeSe₂ (мол. % HgSe = const).

(рис. 1).

Дослідження спектрального розподілу коефіцієнта поглинання проводилось по стандартній методиці із синхронним детектуванням. Для дослідження готувались зразки товщиною 0,01 - 0,015 см. Обробка поверхні проводилась механічним способом з використанням алмазних паст різного ступеня зернистості. Для дослідження були взяті сплави по ізоконцентратах HgSe та GeSe₂:

1) (0 - 8) мол. % Cu₂Se, (77 - 69) мол. % GeSe₂, 23 мол. % HgSe;

2) (19 - 38) мол. % HgSe, (76 - 57)мол.% GeSe₂, 5 мол. % Cu₂Se.

На (рис. 2 - 5) подано графіки залежності коефіцієнта поглинання α (см⁻¹) від довжини хвилі λ (nm), в залежності від складу при температурах T=77 К та T=290 К.

Bci досліджувані зразки характеризуються прозорістю В інфрачервоній області спектру та експоненційним коефіцієнта спадом поглинання на краю фундаментального поглинання. Ці властивості є характерними для халькогенідних стекол. За даними спектрального розподілу коефіцієнта поглинання побудовано залежності оптичної енергії іонізації від складу (рис. 6, 7). (Енергія оптичної іонізації визначалась за точкою порогу рухливості, означеної за Моттом [2]). При збільшенні вмісту Cu₂Se в сплавах (рис. 6) енергія оптичної іонізації зменшується. До того ж в інтервалі (0-4) мол.% Си2Se енергетична щілина

зменшується плавно, вище 4 мол.% Cu₂Se проявляється різке зменшення Е_g при Т=77 К та T=290 К. Як випливає з експерименту на межі склоутворення (5 мол. % Cu₂Se - 19 мол. % HgSe - 76 мол. % GeSe₂ та 5 мол. % Cu₂Se - 38 мол. % HgSe - 57мол. % GeSe₂) E_g набуває мінімального значення (рис. 7) при T=77 К та T=290 К. На рис. 7 також спостерігається максимум оптичної енергії іонізації поблизу 25 мол. % HgSe. Цей висновок підтверджує також рис. 6, оскільки сплави з складом 6 мол. % Си₂Se- 23 мол. % HgSe-71мол. % GeSe2 та 8 мол. % Cu2Se-23мол. % HgSe-69 мол. % GeSe₂ знаходиться на межі склоутворення, а енергія оптичної іонізації для них є найменшою.

Важливою характеристикою при дослідженні оптичного поглинання є вплив температури на величину та α Eg. Розглянемо зміну температури сплаву як температурну деформацію. Найбільше вплив температури на край поглинання проявляється в зсуві порогу поглинання внаслідок зміни ширини забороненої зони [3]. Температура викликає зміну міжатомної відстані (в кристалах сталої решітки а₀). Такі можна здійснити зміни не лише температурною деформацією Δ(T), але й деформацією тиску $\Delta(P)$. Бардін і Шоклі [4] показали, що зміни даного енергетичного рівня при малих деформаціях можна описати допомогою за тензора деформаційного потенціалу E_{ii}.

$$\delta \mathbf{E}(\mathbf{r}) = \sum_{ij} E_{ij} W_{ij}(\mathbf{r}), \tag{1}$$

де W_{ij}(**r**) - тензор деформації; δ E(**r**) - зміна енергії рівня в точці **r**. Для випадоку однорідної температурної деформації $\Delta(T)$ ширина забороненої зони визначається із співвідношення:

$$E_{g}(T) = E_{g}(0) + [Ea,c(T) - Ea,v(T)] + (E_{1,c} - E_{1,v}) \Delta(T),$$
(2)

Рис. 7. Залежність енергії оптичної іонізації від складу стекол системи Cu₂Se - HgSe - GeSe₂ (мол. % Cu₂Se = const).

де:	$\Delta(T)$	=	$\int_{0}^{T} \left(\frac{\partial \Delta}{\partial T}\right) dT$	_	температурний
-----	-------------	---	---	---	---------------

положення рівня температури Т.

E₁ – коефіцієнт, що характеризує зміну положення рівня, залежно від температури Т.

коефіцієнт розширення; Е_{а,с}, Е_{а,v} – енергія країв зони; Е₁ – коефіцієнт,що характеризує зміну

Із виразу (2) одержимо:

$$\frac{\partial E_g}{\partial T} = \frac{\partial E_{a,c}}{\partial T} - \frac{\partial E_{a,v}}{\partial T} + (E_{1,c} - E_{1,v}) \frac{\partial \Delta}{\partial T}.$$
(3)

Температурну деформацію досліджено при вимірюванні залежності $\alpha(\lambda)$ (α (см⁻¹) – коефіцієнт поглинання) на краю фундаментального поглинання при температурах T = 77 та T = 290 К. В сплавах системи Cu₂Se - HgSe - GeSe₂ виявлено зсув краю поглинання. Причому при пониженні температури до рідкого азоту (T = 77 K) л. % GeSe₂ - зменшується (рис.6).

В багатодолинному напівпровіднику різні долини характеризуються різними

енергія оптичної іонізації Eg як збільшувалась так і зменшувалась, В залежності від складу зразків. Наприклад, в стеклах (0 - 4) мол. % Cu₂Se - 23 мол. % HgSe - (77 - 73) мол. % GeSe2 при пониженні температури Eg зростає, стеклах В (6-8) мол. % Cu₂Se - 23 мол. % HgSe - (71-69) мо коефіцієнтами Е_{1,с}, Е_{1,v} (формула 3). Тому

можливі випадки:

Фізико-хімічні та фізичні властивості стекол ...

1)
$$\frac{\partial E_g}{\partial T} > 0;$$
 2) $\frac{\partial E_g}{\partial T} < 0;$ 3) $\frac{\partial E_g}{\partial T} = 0.$

Таблиця 2.

	Склад, мол. %	,)	$\frac{\partial E_g}{\partial T} \left(\frac{eB}{mg\partial} \right)$
Cu ₂ Se	HgSe	GeSe ₂	
0	23	77	-11,55*10 ⁻⁴
2	23	75	-9,61*10 ⁻⁴
4	23	73	-11,50*10 ⁻⁴
6	23	71	1,41*10 ⁻⁴
8	23	69	2,72*10 ⁻⁴
5	19	76	-10,33*10 ⁻⁵
5	24	71	6,57*10 ⁻⁵
5	28,5	66,75	1.88*10 ⁻⁵
5	33,25	61,75	-16.43*10 ⁻⁵
5	38	57	-5.16*10 ⁻⁵

Залежність температурної деформації від складу.

Найбільш поширений є випадок 2. Для сплавів, досліджених в даній роботі, значення $\frac{\partial E_g}{\partial T}$ подано в таблиці 2. Як видно із (таблиці 2) $\frac{\partial E_g}{\partial T}$ набуває як додатних, так і від'ємних значень. Вираз (2) допускає можливість таких випадків. Порівняємо спектральний розподіл коефіцієнта поглинання стекол по ізоконцентраті (мол. % Cu₂Se = const) при різних температурах: T=77 та T=290 К (рис. 5, 3). На ділянці з енергією фотонів вище "експоненційного хвоста" спостерігається зменшення коефіцієнта поглинання при температурі рідкого азоту, порівняно із значенням α при нормальних умовах. Те ж саме відбувається на ділянці графіка в інфрачервоній області спектру при $\lambda > 1.9$ мкм. Як відомо коефіцієнт поглинання пропорційний інтегралу по всіх можливих параметрах станів, що розділені енергією hv від добутку густин початкових і кінцевих станів [5]. Крім того, якщо переходи відбуваються за участю фононів, то коефіцієнт α пропорційний ймовірності взаємодії з фононами, яка сама є функцією числа фононів N_p енергією E_p , тобто $f(N_p)$. Виходячи із вище викладених міркувань, кінцева формула коефіцієнта поглинання для переходів з поглинанням фонона має вигляд:

$$\alpha(h\nu) \sim N_p \cdot (h\nu - E_g + E_p)^2.$$
(3)

Формула (4) визначає залежність $\alpha = \alpha(h\nu)$ для непрямих переходів між непрямими долинами. $N_p = \frac{1}{exp\left(\frac{E_p}{kT}\right) - 1}$ – число

фононів, що підлягає статистиці Бозе –

Ейнштейна. Таку ж залежність α(hv) отримали Н. Мотт і Е. Девіс [2] для склоподібних напівпровідників з енергією hv вище "експонеційного хвоста":

$$\alpha(h\nu) \sim (h\nu - E_0)^2,$$

де Е₀ – величина щілини рухливості.

Відомо, що при низьких температурах густина фононів невелика, тому при зменшенні N_p у формулі (3), $\alpha(h\nu)$ теж зменшується, що і спостерігається

експериментально. Зміну знака $\frac{\partial E_g}{\partial T}$ (2)

для різного компонентного складу стекол (таб. 2) можна пов'язати із заміною одних переходів між енергетичними рівнями іншими.

- [1] D. Olekseyuk, O.V. Parasyuk, V.V. Bozhko, I.I Petrus', V.V. Galyan. Physico-chemical and physical properties of glasses of the HgSe GeSe₂ system // *J. Functional materials*, **3**, pp. 550 553 (1999).
- [2] Н. Мотт, Э. Девис Электронные процесы в некристалических веществах: Т.1 Пер. с анг. М.: Мир, 472 с. (1974).
- [3] Оптические свойства полупроводников. под ред. Р. Уиллардсона, И.А. Бира. М.: Мир, 368 с. (1970).
- [4] J. Bardeen, W. Shocley // Phys. Rev. 80, P. 72 (1950).
- [5] Ж. Панков Оптические процесы в полупроводниках. М.: Мир, 456 с. (1973).

I.D.Olekseyuk, O.V.Marchuk, O.V.Parasyuk, V.V.Bozko, V.V.Galyan

Physics and chemical properties of the glass system Cu₂Se - HgSe - GeSe₂

Lesya Ukrainka Volynj State Universitu, Voli av., 13, Lutsk, 263009, Ukraine tel.:.(03322) 4-99-72

Is determined the border of glass-originating in 3-quasysystem Cu2Se - HgSe - GeSe2. The optical absorption glass-semiconducting alloys in borders $450 < \lambda(nm) < 2500$ is investigated.