УДК 546.56'47'81'23+536.42.3

І.Д. Олексеюк, І.В. Дудчак, Л.В. Піскач Фазові рівноваги в квазіпотрійній системі Cu₂Se-ZnSe-Cu₂SnSe₃

Волинський державний університет ім.Лесі Українки, пр.Волі, 13 43009 Луцьк, Україна, e-mail: pikr@lab.univer.lutsk.ua

Методами диференційно-термічного, рентгенофазового та мікроструктурного аналізів проведено дослідження чотирьох політермічних перерізів квазіпотрійної системи Cu₂Se-ZnSe-Cu₂SnSe₃. Побудовані проекція поверхні ліквідуса та ізотермічний переріз при 670 К. В системі підтверджено існування тетрарної сполуки Cu₂ZnSnSe₄, що належить до класу алмазоподібних напівпровідників, та є аналогом природнього мінералу станіну і кристалізується в тетрагональній структурі з параметрами решітки a=0,5855 (1) нм та с=1,1379 (3) нм. Встановлені характер протікання моно- і нонваріантних процесів та їх координати.

Ключові слова: станін, фазові рівноваги, евтектика, перитектика, квазіпотрійна система, політермічний переріз, тетрарна сполука, розчинність.

Стаття поступила до редакції 14.01.2001; прийнята до друку 5.03.2001

Дослідження системи Cu₂Se-ZnSe-Cu₂SnSe₃ представляє інтерес в зв'язку з наявністю в ній подвійних та потрійних сполук, що вже знаходять використання в напівпровідникових якості матеріалів. Утворення тетрарної сполуки Cu₂ZnSnSe₄ доповнює інтерес до цієї системи. Тетрарна сполука належить до класу алмазоподібних напівпровідників і є аналогом природнього мінералу станіну. В роботі [1] були вивчені деякі властивості Cu₂ZnSnSe₄ та показано, що вона, маючи $\Delta E=1,5$ eB, може бути використана як матеріал в пристроях для акумулювання сонячної енергії. У зв'язку з цим систематичне дослідження системи $Cu_2Se-ZnSe-Cu_2SnSe_3$ необхідне для визначення природи утворення, області існування тетрарної сполуки та підбору умов вирощування її монокристалу.

Сполуки Cu₂Se, ZnSe, Cu₂SnSe₃

плавляться конгруентно при 1421 К [2], 1793 K [2], 968 K [3] відповідно, що дозволяє ïм виступати компонентами квазіпотрійної системи. Згідно [2,4]кристалічна структура Cu₂Se при кімнатній відповідає тетрагональній температурі сингонії, при 404 К відбувається перехід у кубічну сингонію. В роботі [5] низькотемпературна α -Cu₂Se ідентифікована як орторомбічна. Отримані нами результати погоджуються з роботою [5]. ZnSe також має дві модифікації – сфалерит і вюрцит [2,6]. Згідно [3] сполука Cu₂SnSe₃ має поліморфний перехід при 853 К. Низькотемпературна модифікація кристалізується в кубічній сингонії.

Обмежуючі квазіподвійні системи $Cu_2Se-ZnSe$, $Cu_2Se-Cu_2SnSe_3$ Cu_2SnSe_3-ZnSe вивчалися раніше [7–11] (рис.1).

Система Си₂Se-ZnSe має діаграму стану

четвертого типу по Розебому [7]. Координати перитектичної точки: 46 мол.% ZnSe, 1415 К. Розчинність при 670 К на основі Cu₂Se складає близько 1 мол.% ZnSe, на основі ZnSe – 0,27 мол.% Cu₂Se. При підвищенні температури до перитектичної

Cu₂SnSe₃; Cu₂SnSe₃-ZnSe; ZnSe-Cu₂Se.

розчинність ZnSe в Cu₂Se значно зростає і становить 55 мол.% ZnSe.

Система Си₂Se-Си₂SnSe₃ є складовою дослідженої в літературі квазібінарної системи Cu₂Se-SnSe₂, відомості про яку приведені в роботах [8, 9, 10]. Для системи характерна евтектична взаємолія. Координати евтектичної точки 941 К та 27 мол.% SnSe₂. Область гомогенності при температурі евтектичного процесу перевищує 10 мол.% SnSe₂. Із пониженням температури розчинність зменшується і при 670 К складає 4 мол.% SnSe₂.

Система Си₂SnSe₃-ZnSe є квазібінарним перерізом і триангулює квазіпотрійну Cu₂Se-ZnSe-SnSe₂ систему на дві підсистеми: Cu₂Se-Cu₂SnSe₃-ZnSe та ZnSe-Cu₂SnSe₃-SnSe₂ [11]. В цій системі утворюється тетрарна сполука Cu₂ZnSnSe₄ за перитектичним процесом L + $\beta \Leftrightarrow \delta$ (β твердий розчин на основі ZnSe, б-твердий $Cu_2ZnSnSe_4$) розчин на основі який проходить при 1061 К. Поліморфне перетворення Cu₂ZnSnSe₄ ($\delta \Leftrightarrow \delta'$) протікає при 890 К. Область гомогенності складає 1,5 мол.% при 670 К по обидва боки від стехіометричного складу. Кристалізуеться низькотемпературна модифікація y структурному типі станіну, пр. гр. $I\overline{4}2m$, а=0,5855 (1) нм та с=1,1379 (3) нм, що **V3ГОДЖУЄТЬСЯ** 3 даними [12]. Склал перитектичної точки відповідає 14 мол.%

ZnSe. Евтектичний процес L \Leftrightarrow Cu₂SnSe₃ + δ проходить при 967 К. Склад евтектичної точки відповідає 2,5 мол.% ZnSe. Розчинність на основі Cu₂SnSe₃ не виявлена. Тверді розчини на основі ZnSe при 670 К простягаються до 1 мол.% Cu₂SnSe₃ і з підвищенням температури зростають до 4 мол.% Cu₂SnSe₃ (при температурі перитектичного процесу).

Для синтезу сплавів використовували прості речовини: Си – 99,99 мас.%, Zn – 99,99мас.%, Sn – 99,999 мас.%, Se – 99,9997 мас.%. Синтез досліджуваних зразків проводився однотемпературним методом у вакуумованих кварцових ампулах; максимальна температура складала 1400 К; температура відпалу – 670 К.

Фазові рівноваги в системі Cu₂Se-ZnSe-Cu₂SnSe₃ вивчали диференційно-термічним (ДTA), рентгенофазовим $(P\Phi A)$ та мікроструктурним (МСА) методами. ДТА виконували на установці, що складається із печі "Термодент", двохкоординатного та блоку підсилення сигналу самописця Pt–Pt/Rh термопари. ΡΦΑ сплавів проводили методом порошку на ДРОН 4-13 (CuK_a-випромінювання). Мікроструктурний аналіз виконували на мікроскопі ММУ-3.

Рис.2. Склади досліджуваних зразків системи Cu₂Se-ZnSe-Cu₂SnSe₃.

Для побудови поверхні ліквідуса та ізотермічного перерізу системи Cu₂Se-ZnSe-Cu₂SnSe₃ (рис. 2) було вивчено чотири політермічних перерізи всередині концентраційного трикутника та близько п'ятидесяти окремих сплавів для уточнення положення моноваріантних ліній, складів неваріантних точок та границь твердих розчинів.

Переріз Cu₂Se-Cu₂ZnSnSe₄

Політермічний переріз Cu₂Se-Cu₂ZnSnSe₄ представлений на рис. 3. Він перетинає поля первинної кристалізації α-твердого розчину на основі Cu₂Se та β-твердого розчину на

Рис. 3. Фазова діаграма перерізу $Cu_2Se-Cu_2ZnSnSe_4$: $1-L, 2-L+\alpha, 3-L+\beta, 4-\alpha, 5-L+\alpha+\beta, 6-L+\delta+\beta, 7-\delta, 8-\delta+\delta', 9-\delta', 10-\alpha+\delta, 11-\alpha+\delta'.$

ZnSe. основі Вторинна кристалізація бінарних перитектик L + $\beta \Leftrightarrow \alpha$ та L + $\beta \Leftrightarrow \delta$ закінчується при температурі потрійної 1003 К. перитектики при Переріз € підсолідусній квазібінарним В області. Однофазна область б' межує з трифазною $L + \delta' + \alpha$, а лінія між ними є двофазною $\delta' + \alpha$. Межа твердого розчину тетрарної сполуки становить 7 мол.% Си₂Se при температурі перитектичного процесу зменшується із з пониженням температури до 2 мол.% при температурі відпалу. Поліморфне перетворення Cu₂ZnSnSe₄ в системи Cu₂Se-ZnSe-Cu₂SnSe₃ об'ємі перитектоїдній реакції проходить по $\delta \Leftrightarrow \delta' + \alpha$ і протікає із значним зростанням температури 950 К. Поліморфне до перетворення $\alpha \Leftrightarrow \alpha'$ не зображено на евтектоїдний рисунку. Процес носить характер і його температура складає 400 К.

При цьому високотемпературна ГЦК-фаза Cu₂Se перетворюється y низькотемпературну орторомбічну фазу. Рентгенофазовим аналізом було встановлено, що Cu₂Se та найближчі сплави містять низькотемпературну модифікацію α -Cu₂Se параметрами решітки 3 а=1,19(5) нм, b=0,82(2) нм, c=0,42(1) нм та кубічну модифікацію α' -Cu₂Se 3 параметрами решітки a=0.569(3)HM. Параметри решітки α-Си₂Se та α'-Си₂Se погоджуються з результатами досліджень в роботі [5]. Стабілізація високотемпературної модифікації α-твердих розчинів на основі Cu₂Se до 400 К зумовлена тим, що вони формуються з участю ZnSe і відбувається ізоморфне заміщення атомів міді на атоми цинку. Це твердження узгоджується з висновками авторів [13].

Переріз Cu₂ZnSnSe₄ – В (В – 50 мол.% ZnSe, 50 мол.% Cu₂Se)

Рис. 4. Фазова діаграма перерізу $Cu_2ZnSnSe_4$ – В (В – 50 мол.% ZnSe, 50 мол.% Cu_2Se) : 1 – L, 2 – L + β , 3 – L + α + β , 4 – L + α , 5 – α , 6 – α + β , 7 – L + δ + β , 8 – δ + β , 9 – δ , 10 – δ + δ' , 11 – δ' , 12 – β + δ' , 13 – β + α + δ , 14 – β + α + δ' .

Ліквідус цього політермічного перерізу (рис. 4) складається з однієї лінії, що

відповідає початку кристалізації β-твердих розчинів. Поле первинної кристалізації αтвердого розчину знаходиться всередині фазової діаграми перерізу Cu₂ZnSnSe₄ – В. Це обумовлено тим, що точка максимальної розчинності в Cu₂Se ZnSe перевищує 50 мол.% ZnSe. Солідус перерізу представлений лінією, належить що площині нонваріантної перитектичної рівноваги з температурою 1003 К. При цій закінчується температурі вторинна кристалізація бінарних перитектик L+ $\beta \Leftrightarrow \alpha$ Перитектоїлний та $L+\beta \Leftrightarrow \delta$. процес відображає поліморфне перетворення тетрарної сполуки (δ ⇔ δ'), нижче якого існує рівновага α- і β-твердих розчинів та βі б-твердих розчинів відповідно.

Переріз F – Е

(F – 13 мол.% ZnSe, 87 мол.% Cu₂Se, E – 13 мол.% ZnSe, 87мол.% Cu₂SnSe₃)

Рис. 5. Фазова діаграма перерізу F – E (F – 13 мол.% ZnSe, 87 мол.% Cu₂Se,

 $\begin{array}{l} E-13 \text{ mon.}\% \text{ ZnSe, } 87 \text{ mon.}\% \text{ Cu}_2 \text{ZnSnSe}_4):\\ 1-L, 2-L+\alpha, 3-\alpha, 4-L+\beta, 5-L+\alpha+\beta,\\ 6-L+\delta+\beta, 7-L+\delta, 8-\alpha+\beta, 9-L+\delta+\alpha,\\ 10-L+\delta+\text{Cu}_2 \text{SnSe}_3, 11-\alpha+\delta+\beta, 12-\alpha+\delta,\\ 13-\text{Cu}_2 \text{SnSe}_3+\alpha+\delta, 14-\text{Cu}_2 \text{SnSe}_3+\alpha+\delta',\\ 15-\text{Cu}_2 \text{SnSe}_3+\delta. \end{array}$

Політермічний переріз F – Е (рис. 5) проходить через дві площини потрійних рівноваг квазіпотрійної системи Cu₂Se-ZnSe-Cu₂SnSe₃. Горизонталь при 1003 К

відповідає площині потрійного перитектичного процесу L + $\beta \Leftrightarrow \alpha + \delta$, а при площині потрійного 937 К _ евтектичного процесу L \Leftrightarrow Cu₂SnSe₃ + α + δ . Крім двох полів первинної кристалізації αта в-фаз, що складають ліквідус цього після перерізу, він, поля вторинної кристалізації бінарної перитектики L+β⇔δ, перетинає поле первинної кристалізації тетрарної сполуки. Вторинна кристалізація бінарних перитектик, що знаходяться на бічних сторонах $L + \beta \Leftrightarrow \alpha$ та $L + \beta \Leftrightarrow \delta$, закінчується при температурі перитектичного процесу при 1003 К. Вторинна кристалізація бінарної евтектики $L \Leftrightarrow \delta + \alpha$, починається при температурі яка перитектичного процесу L + $\beta \Leftrightarrow \delta + \alpha$, iз зникненням β-фази та бінарної евтектики L ⇔ β + δ закінчується при температурі евтектичного процесу при 937 К.

Об'єми трифазних рівноваг Cu₂SnSe₃ + $+\alpha + \delta$ та $\alpha + \delta + \beta$ розділені двофазною $\alpha + +\delta$. До сторони трикутника Cu₂SnSe₃-ZnSe примикає двохфазна область Cu₂SnSe₃ + δ .

Ізотермічний переріз та проекція поверхні ліквідусу системи Cu₂Se-ZnSe-Cu₂SnSe₃

Рис. 6. Ізотермічний переріз системи Cu₂Se-ZnSe-Cu₂SnSe₃ при 670 К.

Ізотермічний переріз системи $Cu_2Se-ZnSe-Cu_2SnSe_3$ при 670 К зображений на рис. 6. При даній температурі в системі існує область гомогенності α -твердих розчинів на основі Cu_2Se , максимальні значення яких складають 1 мол.% ZnSe та 4 мол.% Cu_2SnSe_3 на відповідних бічних

сторонах та менше 2 мол.% по перетину Cu₂Se-Cu₂ZnSnSe₄. Область гомогенності βтвердих розчинів на основі ZnSe складає 0,27 мол.% Cu₂Se та 1 мол.% Cu₂SnSe₃ на відповідних бічних сторонах. Область гомогенності б-твердих розчинів на основі Cu₂ZnSnSe₄ складає по 1,5 мол.% по обидва боки від стехіометричного складу на бічній стороні та 2 мол.% Си2Se на перерізі Cu₂ZnSnSe₄-Cu₂Se. Розчинність на основі тернарної сполуки Cu₂SnSe₃ не виявлено. Знайдено дві трифазні області: $\alpha + \beta + \delta$, $Cu_2SnSe_3 + \alpha + \delta$, які обмежені областями сумісного існування двох фаз: $\alpha + \beta$, $\beta + \delta$, α + δ , Cu₂SnSe₃ + α , Cu₂SnSe₃ + δ .

Рис. 7. Проекція поверхні ліквідусу системи Cu₂Se-ZnSe-Cu₂SnSe₃.

Поверхня ліквідусу квазіпотрійної системи $Cu_2Se-ZnSe-Cu_2SnSe_3$ (рис. 7), побудована на основі літературних даних [7–11] та власних досліджень і складається з чотирьох полів первинної кристалізації фаз: α , β , δ та Cu₂SnSe₃. Поле β -твердого розчину на основі ZnSe, як найбільш тугоплавкої фази. займає значну плошу концентраційного трикутника. Поля первинної кристалізації розділені п'ятьма моноваріантними лініями та шістьма нонваріантними точками, З ЯКИХ одна відповідає потрійній перитектиці, друга евтектиці, дві – подвійним потрійній евтектикам, дві – подвійним перитектикам (табл. 1).

Висновки

За допомогою методів диференційнотермічного, рентгенофазового та мікроструктурного аналізів побудовано чотири політермічних перерізи системи Cu₂Se-ZnSe-Cu₂SnSe₃, ïï ізотермічний переріз та проекцію поверхні ліквідусу. В системі підтверджено існування тетрарної $Cu_2ZnSnSe_4$, яка утворюється сполуки інконгруєнтно за перитектичною реакцією L+β ⇔ δ при 1061 К, встановлено область гомогенності б-твердих розчинів на основі Cu₂ZnSnSe₄. Cu₂ZnSnSe₄ має тетрагональну

Табл. 1. Характер та температури перебігу нонваріантних процесів в системі $Cu_2Se - ZnSe - Cu_2SnSe_3$.

Характер та температури перебігу нонваріантних процесів у квазіпотрійній системі Cu₂Se-ZnSe-Cu₂SnSe₃

структуру з параметрами решітки а=0,5855 (1) нм та с=1,1379 (3) нм. Розчинність на

основі Cu₂Se та ZnSe незначна. Розчинність на основі Cu₂SnSe₃ не виявлена.

- H. Matsushita, T. Maeda, A. Katsui, T. Takizawa. Thermal analysis and synthesis from the melts of Cu-based quaternary compouds Cu₂-III-IV-VI₄ and Cu₂-II-IV-VI₄ (II – Zn, Cd; III – Ga, In; IV – Ge, Sn; VI – Se) // J. of Crystal Growth. 208, pp. 416–422 (2000).
- [2] Н.Х.Абрикосов, В.Ф.Банкина, Л.В.Порецкая и др. Полупроводниковые халькогениды и сплавы на их основе, М.: Наука, 219 с. (1975).
- [3] Л.И. Бергер, В.Д. Прочухан. Тройные алмазоподобные полупроводники. М.: Металлургия. 151 с. (1968).
- [4] Ю.Г. Асадов, Г.А. Джабраилова, В.И. Насиров. Структурные превращения в Cu₂Se // *Неорган. материалы*, VIII, сс. 144-1146 (1972).
- [5] А.Д. Бигвава, А.П. Жирнова, Р.Р. Швангирадзе, П.Г. Юдин. Исследование фазовых соотношений в системе Си-Se вблизи соединения Cu₂Se // *Неорган. материалы*, **16**, сс. 1292-1295 (1980).
- [6] Н.А. Горюнова. Сложные алмазоподобные полупроводники, М.: "Советское радио", 265 с. (1968).
- [7] И.Б. Мизецкая, Г.С. Олейник, Л.И. Трищук. Диаграммы состояния систем Cu_{2-x}S-ZnS и Cu_{2-x}Se-ZnS // *Неорган. материалы*, **18(11**), сс. 1792-1795(1982).
- [8] J. Rivet, P. Laruelle, J. Flahaut, R.Fichet. diagrammes de phases des systemes SnSe -Cu₂Se et SnSe₂ Cu₂Se. Phenomene ordre-desordre et conductivite thermique du compouse Cu₂SnSe₃ // Bull. Soc. chim., 5, pp. 1667-1670 (1970).
- [9] Т.В.Зотова, Ю.А.Карагодин. Исследование фазового равновесия в системах Cu–Ge(Sn)–Se по разрезам Cu₂Se-Ge(Sn)Se₂ // Сборник научных трудов по проблемам микроелектроники (химикотехнологическая серия), Вып. XXI, сс. 57-61 (1975).
- [10] Л.И. Бергер, Е.Г. Котина. Диаграммы состояния систем Cu₂Se SnSe₂, Cu₂SnSe₃ SnSe и Cu₂Se SnSe // Изв. АН СССР. *Неорган. материалы*. 1973. **IX(3)**. сс. 368-370.
- [11] І.В. Дудчак, Л.В. Піскач. Фазові рівноваги в системі Cu₂SnSe₃-ZnSe // Вісник Львів. ун-ту, 40, (2001), (в публікації).
- [12] H.Hahn, H.Schulze. Über quaternäre Chalkogenide des Germaniums und Zinns // Naturwis. Jg. 52(14), pp. 426 (1965).
- [13] Ю.Г. Асадов, К.М. Джафаров, С.Ю. Асадова. Рентгенографическое исследование катионного замещения в Cu₂Se // *Неорган. материалы*, **36(5)**, сс. 542-544 (2000).

I.D. Olekseyuk, I.V. Dudchak, L.V. Piskach

Phase Equibrium in the Quazythird-Timed System Cu₂Se-ZnSe-Cu₂SnSe₃

Lesya Ukrainka Volynj State University, Voli av., 13 43009 Lutsk, Ukraine, E-mail: pikr@lab.univer.lutsk.ua

Investigation of: Eight polythermal sections of the quasiternary $Cu_2Se - ZnSe - Cu_2SnSe_3$ system have been investigated using differential thermal, X-ray phase and microstructural analyses. The projection of the liquidus surface and the isothermal section at 670 K have been constructed. The quaternary compound $Cu_2ZnSnSe_4$, which melts inconngruently at 1061 K is formed in the system. It corresponds to the adamantine semiconductors and is an analogue of stannite. The compound crystallizes in the tetragonal stracture with the lattice parametres a=0,5855 (1) nm and c=1,1379 (3) nm. The character of mono- and nonvariant processes passing and their coordinates were determined.