УДК 680.181

Б.К. Остафійчук, І.М. Гасюк, О.В. Копаєв Модель твердого розчину магній-цинкових феритів

Прикарпатський університет ім. В. Стефаника, 76025 м. Івано-Франківськ, вул.Шевченка,57

В роботі представлені методика і результати рентгеноструктурного дослідження ступені оберненості шпінелі і валентного стану іонів заліза в магній-цинковому фериті. Зміни валентного стану підтверджені рентгеноструктурними дослідженнями.

Ключові слова: магній-цинковий ферит, шпінель, катіонний розподіл, К-край поглинання.

Стаття поступила до редакції 17.12.2000; прийнята до друку 13.01.2001

I. Вступ

Магній-цинкові ферити досить £ складними у вивченні їх кристалічно-іонної структури, оскільки в них відсутня чітка диференціація матричних катіонів Mg, Zn і Fe за координаційним оточенням, а отже, і за типом пустот, які вони займають у шпінельній структурі, а також присутністю ефективною катіонів i3 змінною валентністю. При дослідженні іонної структури таких феритів до недавнього часу [1] не бралася до уваги наявність у їх складі певної долі іонів заліза із ефективною валентністю +2, що веде до зменшення магнітного моменту катіона на олин магнетон Бора і зміни макроскопічних характеристик магнітних [2]. Зміна валентності ефективної обумовлена відновленням іонів Fe³⁺ з утворенням іонів Fe²⁺ шо визначається конфігурацією зовнішньої електронної оболонки з 3d⁵ до 3d⁶. Катіони Fe²⁺ завдяки такій електронній будові валентних орбіталей мають сильно виражену енергетичну перевагу до координаційного числа 6 [3], що сприяє їх дислокації в октавузлах шпінелі. Таким чином, при зміні ефективної валентності змінюватиметься іонів заліза ступінь

оберненості шпінелі є, яка визначається вмістом іонів Fe³⁺ у тетравузлах шпінелі.

II. Методика експерименту

У даній роботі досліджувалась іонна структура магній-цинкових феритів складу, близького до промислового, із загальною формулою

$$(Mg_{1-x} Zn_x)_{1-y} Fe_{2+z} O_4,$$
 (1)

де y=-0,048;0;0,053; z=2/3y; x=0,44...0,50, синтезованих за традиційною керамічною технологією [4].

Рентгеноструктурні дослідження виконані на рентгенівському спектрометрі ДРОН-3 з використанням FeK_αвипромінювання.

Розподіл катіонів за підгратками шпінельної структури визначався за даними рентгеноструктурного аналізу, шляхом порівняння експериментальних і обчислених значень структурних складових Fhkl амплітуд ліній кривих дифракційного відбивання від різних кристалографічних площин. Такий метод дає цілий ряд переваг [5], що зводяться до можливості вибору ліній, структурні амплітуди яких сильно залежать від катіонного розподілу і мало від кисневого параметру, причому інтегральні інтенсивності S_{hkl} цих ліній визначаються атомними факторами розсіювання f_i іонів, які належать тільки до однієї із підграток шпінельної структури. Оскільки фактор розсіювання У дифрактометрії плоских зразків не залежить від кута дифракції Θ [6], то для спрощення розрахунків, без втрат у точності, вибирався еталонний рефлекс (440) з незалежною від розподілу катіонного інтегральною інтенсивністю S₄₄₀, по відношенню до якого розглядалися залежні від катіонного розподілу інтегральні інтенсивності S₂₂₀ та S₂₂₂..

За експериментальним значенням

відношень структурних амплітуд
$$\frac{F_{220}}{F_{440}}$$
 та

 $\frac{F_{222}}{F_{440}}$ знаходимо ступінь оберненості є з

кожного рівняння типу

$$\left(\frac{F_{hkl}}{F_{h_1k_1l_1}}\right)_{exp} = \left(\frac{F_{hkl}}{F_{h_1k_1l_1}}\right)_{teor}.$$
 (2)

Експериментальне значення визначається як:

$$\left(\frac{F_{hkl}}{F_{h_1k_1l_1}}\right)_{exp} = D_{\sqrt{\frac{S_{hkl}}{S_{h_1k_1l_1}}}},$$
 (3)

де

$$D = e^{B\left[\left(\frac{\sin\Theta}{\lambda}\right)_{hkl}^{2} - \left(\frac{\sin\Theta}{\lambda}\right)_{h1k1l1}^{2}\right]} X \sqrt{\frac{\frac{P_{h1k1l1}\left(\frac{1+\cos^{2}2\Theta}{\sin^{2}\Theta\cos\Theta}\right)_{h1k1l1}}{P_{hkl}\left(\frac{1+\cos^{2}2\Theta}{\sin^{2}\Theta\cos\Theta}\right)_{hkl}};$$
(4)

 P_{hkl} — фактор повторюваності; В — температурний фактор, (B=0.46 [5]) λ — довжина хвилі характеристичного випромінювання. У структурні амплітуди F_{hkl} вносять вклад катіони А- і В- позицій та аніони кисню, тобто

$$F_{hkl} = f_t c_t + f_{ok} c_{ok} + f_o c_o$$
, (5)

де C_t , C_{ok} , C_o – значення відповідних тригонометричних функцій [6], f_t , f_{ok} , f_o – атомні фактори розсіювання тетраедричної, октаедричної та кисневої підграток відповідно. Якщо записати структурну формулу досліджуваного фериту у вигляді $(Mg_{(1-x)(1-\epsilon)}^{2+}Zn_x^{2+}Fe_{\epsilon}^{3+})Mg_{\epsilon}^{2+}Fe_{2-\epsilon}^{3+}]O_4$, (6) то $f_t = (1-x)(1-\epsilon)f_{Mg}^{2+} + xf_{Zn}^{2+} + \epsilon f_{Fe}^{3+}$; (7) $f_{ok} = \epsilon f_{Mg}^{2+} + (2-\epsilon)f_{Fe}^{3+}$;

У табличні величини атомних факторів розсіювання [6] вносились поправки на

аномальну дисперсію. Вихідні дані для обчислення ступеня оберненості шпінелей приведені у табл.1.

Отримані значення є усереднювали за формулами

$$\varepsilon_{\rm cep} = \frac{\sum_{i} \varepsilon_{i} k_{i}}{\sum_{i} k_{i}}, \qquad (8)$$

де $k_i = m_i S_i S^*$, S_i , S_i^* – інтегральні інтенсивності рентгенівських рефлексів, із співвідношення яких визначали є;

$$m_{i} = \left(\frac{F_{i}}{F_{i}^{*}}\right)_{\max} - \left(\frac{F_{i}}{F_{i}^{*}}\right) . \tag{9}$$

Параметр гратки однофазної шпінелі магній-цинкового фериту (табл. 2) визначався із співвідношення Вульфа-Брегга для дифракційних ліній (400), (440), (800) з наступною інтерполяцією функції а= $\varphi(\Theta)$ до кута Θ =90⁰. Абсолютна похибка параметра гратки становила ±0.0005 Å.

 $F_0 = 4 f_0^2 - .$

Таблиця	1.
---------	----

Формульні	Реф-		- <u>81-x</u> x)1-y -	• <u>2+2</u> 0 4.			
параметри	лекс	$\mathbf{S}_{\mathbf{hkl}}$	Θ°	${f_{Zn}}^{2+}$	${F_{Mg}}^{2+}$	${f_{Fe}}^{3+}$	f_o^{2-}
x y z	(hkl)						
	220)	0.927	18.937	21.90	7.41	18.14	5.54
0.44.0.052.0.025	222)	0.075	23.476	20.60	6.97	17.14	5.09
0.44 0.053 0.035	440)	1	40.613	16.34	5.84	13.45	9.61
	220)	0.997	18.964	21.91	7.41	18.14	5.44
0.44 0 0	222)	0.089	23.467	20.63	6.97	17.14	4.11
	440)	1	40.596	16.34	5.84	16.45	9.61
	220)	0.870	18.960	22.03	7.41	18.14	5.44
0.44 -0.048 -0.032	222)	0.054	23.481	20.60	6.97	17.12	5.09
	440)	1	40.595	16.34	5.84	13.45	9.61
	(220)	0.991	18.962	21.90	7.41	18.14	5.44
0.50, 0.052, 0.025	(222)	0.095	23.448	20.62	7.01	17.20	5.11
0.50 0,053 0.035	(440)	1	40.596	16.34	5.84	13.45	9.61
	(220)	0.900	18.957	21.91	7.41	18.14	5.44
0.50 0 0	(222)	0.088	23.434	20.63	6.97	17.14	5.11
	(440)	1	40.606	16.28	5.84	13.48	9.60
	(220)	0.976	18.944	21.90	7.41	18.14	5.44
0.50 -0.048 -0.032	(222)	0.079	23.447	20.62	7.01	17.20	5.11
	(440)	1	40.562	16.34	5.84	13.45	9.61

Параметри рентгенівських ліній дифракційного відбивання та атомні фактори розсіювання іонів у зразках (Mg_{1 x} Zn _x)_{1 y} Fe_{2+z} O₄

Розглянемо досліджуваний ферит з точки зору теорії твердих розчинів. Згідно [7], дану систему однозначно можна представити як твердий розчин ізоструктурних шпінельних компонент. Лінійна залежність параметра гратки а твердого розчину від параметрів граток а_і компонент визначається співвідношненням Вегарда [9], аналітична форма якого має вигляд

$$a = \sum_{i} a_i k_i, \qquad (10)$$

де k_i – концентрація і-ї компоненти; $\sum k_i = 1$. Відхилення від співвідношення (10) часто трактується як наслідок дефектності структури твердого розчину. У роботі [10] створена геометрична модель відхилень від правила Вегарда для кубічної структури, на основі якої автори [11] довели, що лінійно від концентрації компонент твердого розчину залежить не параметр гратки, а об'єм її елементарної комірки, тобто

$$a^3 = \sum_i k_i a_i^3$$
. (11)

Кореляція між теоретичною залежністю a(x) при відповідно розрахованих значеннях є повинна свідчити [11] про адекватність вибору моделі твердого розчину.

Таблиця 2.

Зразок→		y ²	=0		Y=-(0.048	y=0.	053
	x=0.44	x=0.46	x=0.48	x=0.50	x=0.44	x=0.50	x=0.44	x=0.50
3	0.414	0.396	0.378	0.360	0.425	0.402	0.398	0.320
a _{exp} Å	8.4172	8.4181	8.4190	8.4197	8.4167	8.4203	8.4154	8.4179
k	0.088	0.089	0.094	0.092	0.098	0.103	0.106	0.110
a(x) Å	8.4123	8.4136	8.4148	8.4160	8.4122	8.4149	8.4123	8.4160
a'(x) Å	8.4163	8.4127	8.4180	8.4192	8.4157	8.4184	8.4159	8.4192

Структурні параметри феритів системи $(Mg_{1-x} Zn_x)_{1-v} Fe_{2+z} O_4$.

При обчисленні теоретичних значень a(x)за формулою (11) застосовувались значення параметрів граток аі компонент, визначені із співвідношення Пуа [12] для величини а параметра кристалічної гратки та ефективних відстаней катіон-аніон y тетраедричних Rt октаедричних i Ro підгратках оксидної шпінелі:

a = 2.0995 R_t +
$$(5.8182 R_o^2 - 1.4107 R_t^2)^{\frac{1}{2}}$$
.(12)

Величини R_t і R_o розраховувались у відповідності з методикою розрахунку міжіонних відстаней з урахуванням координації як катіонів, так і аніонів, запропонованою Талановим [13].

При виборі компонент твердого розчину необхідною умовою є можливість реального існування компонент i3 заданою структурою. Оскільки ряд дослідників [8] доказали неможливість існування цинкової шпінелі змішаного типу y випадку повільного охолодження фериту віл температури синтезу, з розгляду можна виключити обернений цинковий ферит і вважати, що твердий розчин утворюють ферити Mg[Fe₂]O₄; Fe[MgFe]O₄; Zn[Fe₂]O₄ та Fe[ZnFe]O₄. У дужках записані катіони у шпінелі. Процентний октавузлах вміст вказаних твердого розчину компонент визначається параметрами х, у та ступінню оберненості є, оскільки вклад катіонів Fe³⁺ у тетрапідгратку вносить тільки магнієвий ферит. Коректність обчислених величин а_і підтверджується збігом теоретичного i експериментального значення сталої гратки цинкового фериту, реальна структура якого є прямою шпінеллю. Таким чином, для компонент твердого розчину отримано

$$a_{Mg}[Fe_2]_{O_4} = 8.4136 \text{ A};$$

 $a_{Fe}[MgFe]O_4 = 8.3784 \text{ Å};$ $a[ZnFe_2]O_4 = 8.4137 \text{ Å}.$

Оскільки вміст катіонів Fe²⁺ впливає на параметри шпінелі. структурні ΜИ припустили наявність таких іонів V досліджуваному твердому розчині, розрахувавши рівняння i3 Пуа за експериментальними значеннями їх вміст k у зразках.

Для створення реальної адекватної моделі твердого розчину магній-цинкового передбачити фериту необхідно [11] ізоструктурної існування В розчині i3 шпінеллю простої компоненти, яка містить іони двовалентного заліза. Такою вибрано компонентою було магнетит. структурну формулу шпінелі якого можна записати як Fe³⁺[Fe³⁺Fe²⁺]O₄. Обчислене значення сталої гратки магнетиту 8.4482 Å добре узгоджується з експериментом [3].

Для підтвердження характеру зміни ефективної валентності заліза y феритах були отримані досліджуваних рентгенівські К-краї поглинання заліза. Відомо [14,15], що енергетичне положення основного краю поглинання металів у іонних сполуках залежить у першу чергу від валентного стану катіонів у зразках. При ступені окислення підвищенні атомів металів спостерігається зміщення К-краю поглинання в область вищих енергій.

Енергетичне положення точок спектра було визначено з точністю до 0.3 eB відносно енергетичного положення К-краю поглинання заліза в ізоструктурному з досліджуваними зразками магнетиті, що зумовлено наявністю у Fe₃O₄ визначеного зарядового стану катіонів.

III. Результати та їх обговорення

Як видно табл. 2, модель твердого розчину без врахування магнетиту як компоненти не є коректною через значну розбіжність розрахованих і експериментальних значень а.

Збіг результатів експерименту i3 знайденими за правилом Вегарда значеннями параметра гратки а'(х) в межах експерименту свідчить похибки про адекватність такої моделі: складна шпінель однофазна магній-цинкового фериту є твердим розчином прямого і оберненого магнієвого фериту, цинкового фериту та магнетиту. Структурна формула лослілжуваної шпінелі визначається складом (параметри x, y, z), вмістом k іонів Fe²⁺ та ступінню оберненості є і має вигляд: $Mg^{2+}_{1-x(1-y)-\epsilon}Zn^{2+}_{x(1-y)}Fe^{3+}[Mg^{2+}_{\epsilon}]$

 $_{-v}$ Fe³⁺_{2+z-k-ɛ}Fe²⁺_k]O₄.

На рис.1 наведено залежність зміщення ΔE енергетичного положення середньої точки основного піку поглинання (відносно Fe₃O₄) від середньої ефективної валентності заліза ω . Спостерігається зростання ΔE при збільшенні ω , а отже, при зменшенні відносного вмісту Fe²⁺ у зразках.

Для стехіометричних у катіонному відношенні складів (у=0), величина ΔE незмінна у межах похибки експерименту, що свідчить про незначний вплив співвідношення кількості катіонів Mg²⁺ та Zn²⁺ на енергетичний стан іонів заліза.

Характерною є поведінка величини зміщення адсорбційного К-краю заліза у випадку катіонного заміщення фериту, тобто при у≠ 0. При надлишку магнітних

Рис. 1. Залежність зміщення К-краю поглинання Fe від ефективної валентності заліза у зразках магній-цинкового фериту.

катіонів чи їх заміщення на діамагнітні (y>0, y<0 відповідно) ефективна валентність заліза зменшується, про що свідчить і більш низькоенергетичне положення К-краю поглинання, і обчислене значення вмісту іонів Fe²⁺ (табл.2).

Для катіон-заміщених феритів механізм утворення іонів двовалентного заліза визначається співвідношенням фазового вмісту гематиту та магнієвого фериту, що виникає у фериті в процесі його синтезу.

Так, при надлишковому вмісті заліза (III) при наявності магнієвого фериту [7] рівновага реакції

$$6Fe_2O_3 = 4Fe_3O_4 + O_2$$
 (13)

зміщується вправо, оскільки магнетит, що утворюється при дисоціації гематиту, розчиняючись у фериті, зменшує вільну енергію системи.

Для зразків із нестачею вільного оксиду заліза (y<0) початкову дисоціацію фериту можна описати рівнянням

 $MgFe_2O_4 = MgO+2FeO = 1/2O_2$, (14) причому константа рівноваги залежить від парціального тиску кисню при синтезі фериту [7] і при спіканні на повітрі рівновага реакції зміщується вліво з утворенням магнієвого фериту, який при відсутності іонів двовалентного заліза переходить у стабільну нестехіометричну фазу 0,092MgO·MgFe₂O₄ із локалізацією надлишкових на цією фазою іонів заліза у міжвузлі структури, що приводить і до зростання параметрів гратки (табл.2) таких феритів у порівнянні із незаміщеними.

Ступінь оберненості при заміщенні корелює із зміною зарядового стану катіонів заліза, оскільки двовалентні іони заліза витісняють із октаедричних вузлів немагнітні іони магнію.

IV. Висновки

Дослідження кристалічно-іонної структури катіон-заміщених магнійферитів рентгеноструктурним цинкових методом показали, що відхилення від катіонної стехіометрії сприяють утворенню в октапідгратці шпінелі іонів Fe²⁺, що зміни структурних приводить i до параметрів шпінелі. Результати обчислень за моделлю твердого створеною розчину підтверджені даними рентгеноспектрального аналізу.

- [1] Н.В.Пушкарев Кинетика перераспределения катионов по подрешеткам твердых растворов магний-цинковых ферритов в зависимости от состава и условий термообработки. Автореф. дисс. к.ф.-м.н. Минск (1987).
- [2] Y. Watanabe, K. Urade, J. Saito Contribution of the Fe²⁺ ion to magnetic anisotropy in ferrites // *Phys.Stat.Solidi*, **B90**(2), pp. 697-702 (1978).
- [3] С. Крупичка. Физика ферритов и родственных им магнитных окислов. М.: Мир, 1, 354 с. (1976).
- [4] А.с. №1055278 (СССР). Магний-цинковый феррит./ П.М. Бугай, А.В. Копаев, Т.С.Федосеева.
- [5] Ферриты и бесконтактные элементы. Сборник. Под ред.Н.Н.Сироты. Минск (1976).
- [6] Л.И. Миркин. Справочник по рентгеноструктурному анализу поликристаллов. М.: Гос. издат. Физико-математической литературы (1961).
- [7] Ю.Д. Третьяков. Термодинамика ферритов. Ленинград: Химия, 304 с. (1967).
- [8] Г.И. Журавлев. Химия и технология ферритов. Ленинград: Химия (1970).
- [9] L. Vegard, H. Dale. Untersuchunden uber Mischkristalle und Legierungen.// Kristallogr., B67, pp. 148-162 (1928).
- [10] В.С. Урусов. Геометрическая модель отклонений от правила Вегарда. // Журнал структурной химии, **33(6)**, сс. 80-92 (1992).
- [11] Г.П. Костикова, Ю.П. Костиков. Применение правила Вегарда при описании твердих растворов // *Неорг. матер.*, **29(8)**, сс. 1136-1137 (1993).
- [12] П. Пуа. Соотношение между расстояниями анион-катион и параметрами решетки // Химия *твердого тела.* – Под ред. Ж.М. Схоме - М.: Металлургия, сс. 49-75 (1972).
- [13] В.М. Таланов. Рассчет межионных расстояний в окислах со структурой шпинели // Кристаллография, 24(4), с.706-711 (1970).
- [14] S. Bajt, S.R. Satton, J.S. Delaney. Microanalysis of iron oxidation states in earth and planetary materials // *Physica B. Condenced mater*, **208-209**, pp. 243-244 (1995).
- [15] M. Husain, A. Batra. Effect of chemical combination of X-ray absorption edges of ternary compounds // Physica B. Condenced matter, 160, pp. 125-128 (1989).

B.K. Ostafiychuk, I. M. Gasyuk, O.V. Kopayev

The Model of Solid Solution of Magnesium-Zinc Ferrites

Vasyl Stefanyk Precarpathian University, Shevchenko Str., 57, Ivano-Frankivsk, 76000

The procedure and results of study of the spinel inversion degree and iron ion valent states in magnesium-zinc ferrites by X-ray structure analisys are presented. The changes in the valent states has been confirm by X-ray spectroscopy.