УДК 539.143.43;543.422.25

О.Г. Хандожко¹, В.В. Слинько², Є.І. Слинько² Зсув Найта та зонна структура PbTe i SnTe

¹Чернівецький національний університет ім. Ю. Федьковича, кафедра радіотехніки, , вул. Коцюбинського 2, , м. Чернівці, 58012, тел. (03722) 4-24-36, E-mail: rmd@chnu.cv.ua ²Чернівецьке відділення Інституту проблем матеріалознавства НАН України, , вул. І. Вільде, 5, м. Чернівці, 58001, тел. (03722) 2-51-55, E-mail: chimsp@unicom.cv.ua

Наводяться результати дослідження зсуву Найта (Δ H) на ядрах ²⁰⁷Pb в PbTe n і p-типу і на ¹¹⁹Sn в p-SnTe в широкій області концентрацій носіїв струму ($6\cdot10^{16} \div 3, 6\cdot10^{21}$ см⁻³). В зразках PbTe p-типу в інтервалі $6\cdot10^{16} \le p < 6\cdot10^{19}$ см⁻³ зсув є діамагнітним. При p $\approx 2\cdot10^{19}$ см⁻³ Δ H досягає максимального значення, а при p $\approx 6\cdot10^{19}$ см⁻³ має місце інверсія знака Δ H. В n-PbTe зсув Найта парамагнітний в усьому інтервалі концентрацій. При цьому при n $\approx 2\cdot10^{19}$ см⁻³ спостерігається стрибок Δ H величиною ≈ 60 Гс. В SnTe зсув Δ H є тільки парамагнітним. Встановлено, що злами на немонотонній залежності Δ H(p) на ядрах ¹¹⁹Sn відповідають критичним точкам в зонному спектрі дірок SnTe. Розглядається придатність існуючих моделей зонного спектра для пояснення зсуву Найта у телуриді свинцю.

Ключові слова: зонна структура, зсув Найта, критичні точки, концентрація носіїв заряду, спектри ЯМР.

Стаття поступила до редакції 17.11.2001; прийнята до друку 3.01.2002

I. Вступ

Вже перші дослідження ЯМР телуриду свинцю що проста двозонна модель показали (3 врахуванням L і Σ-зони) малопридатна для пояснення експериментальних даних, особливо в області високих концентрацій носіїв струму [1]. В останніх теоретичних роботах [2,3] доводиться, що валентна зона сполук А⁴В⁶ в кубічній фазі має складну структуру. Зокрема, передбачено існування п'яти критичних точок в зонному спектрі дірок. Принципова можливість знаходження особливих точок спектра за температурною і концентраційною залежностями магнітної сприйнятливості (χ) [3] підтверджена експериментально на монокристалах SnTe. Встановлено, що три злами які спостерігаються на залежності χ_{40K}(p) при $p_1 = 1,1 \cdot 10^{20} \text{ cm}^{-3}, p_2 = 2,3 \cdot 10^{20} \text{ cm}^{-3} \text{ i} p_3 = 4,9 \cdot 10^{20} \text{ cm}^{-3}$ відповідають трьом критичним точкам в зонному спектрі: Σ-экстремуму, вперше виявленій сідловій точці в напрямку ΣL і Δ -экстремуму валентної зони SnTe [4].

Зсув Найта (Δ H) у вироджених напівпровідниках, як і χ , безпосередньо пов'язаний із густиною станів на рівні Фермі. Тому ми вважаємо, що зміни в густині станів при проходженні рівня Фермі через критичні точки спектра (пов'язані зі зміною топології поверхні Фермі) повинні виявлятися і на концентраційній залежності Δ H(p).

В даній роботі наводяться результати дослідження концентраційних залежностей зсуву Найта і ширини ліній ЯМР на ядрах ²⁰⁷Pb в PbTe (n i

р-типу) і ¹¹⁹Sn в SnTe (р-тип) в широкому інтервалі концентрацій носіїв струму 6·10¹⁶ ÷ 3,6·10²¹ см⁻³. Розглядається придатність відомих моделей зонного спектра для пояснення концентраційних залежностей зсуву Найта в телуриді свинцю.

II. Експеримент

Відомо, що для послаблення впливу скінефекту на форму резонансної лінії спостереження ЯМР в матеріалах з високою провідністю проводять на порошках. Однак механічне подрібнення монокристалічних зразків p-PbTe призводить до появи складних резонансних спектрів [5]. Щоб виключити вплив пластичної деформації на спектри 207 Pb в p-PbTe, виміри ЯМР проведені нами на монокристалічних пластинах товщиною 100-200 мкм. У той же час, подрібнення матеріалу практично не впливає на форму лінії і зсув Найта в PbTe n-типу i SnTe.

Для спостереження сигналів ЯМР використовувалася методика, запропонована в [6]. В якості вхідного пристрою спектрометра було застосовано модифікований індукційний міст [7], в якому за рахунок особливої конструкції досягалися довготривалий стабільний баланс і високий ступінь розв'язки передавача і приймача (до 100 дБ) при достатньо високих рівнях високочастотного поля ($H_1 = 0,3 \Gamma c$).

Запис спектрів проводився на постійній частоті 13,495 МГц шляхом швидкого сканування умов резонансу з реєстрацією первісної сигналу. При спостереженні широких спектрів (>10 Гс) використовувалася модуляційна техніка з повільним проходженням і записом похідних лінії ЯMР. В обох випадках для покращення співвідношення сигнал/шум застосовувалося цифрове накопичення резонансних спектрів. З тією ж метою доцільно використовувати зразки у вигляді блоків, що складаються 3 4÷6 монокристалічних пластин.

III. Експериментальні результати

Зсув Найта в РbTe p- і n-типу. Виміри зсуву Найта в p-PbTe були проведені в інтервалі концентрацій дірок $p = 6 \cdot 10^{16} \div 1 \cdot 10^{20}$ см⁻³. Зразки з $p \le 8 \cdot 10^{18}$ см⁻³ отримані шляхом відпалу матеріалу в парах металу або халькогена, з більш високими концентраціями – за допомогою легування PbTe домішками Li, Na, Tl.

На рис. 1 наведена залежність ∆H(p) в p-PbTe.

Рис. 1 Залежність зсуву Найта ²⁰⁷Рb від концентрації дірок у р-РbТе.

Величина зсуву визначалася як різниця між значенням сумарного резонансного поля на ядрі і еталонного магнітного поля ($H_{et} = 15135 \ \Gamma c \pm 2 \ \Gamma c$). Поле H_{et} , що відповідає хімічному зсуву на ядрах ²⁰⁷Pb в PbTe, отримано шляхом екстраполяції концентраційної залежності резонансного поля до малих значень р при T = 293 K. Як бачимо, в області концентрацій $6 \cdot 10^{16} \le p < 6 \cdot 10^{19} \ cm^{-3}$ зсув є від'ємним, тобто діамагнітним. При p $\approx 2 \cdot 10^{19} \ cm^{-3}$ діамагнітний зсув досягає максимального значення, а при p $\approx 6 \cdot 10^{19} \ cm^{-3}$ спостерігається інверсія знака ΔH і він стає парамагнітним. Подібний факт зміни знака ΔH спостерігався лише в твердому розчині Pb_{1-x}Sn_xTe (x > 0,6) на ядрах ¹¹⁹Sn [8].

Зовсім інша картина спостерігається на ядрах

Рис. 2. Залежність зсуву Найта 207 Pb від концентрації електронів в n-PbTe при T = 293 K.

²⁰⁷ Pb в n-PbTe (рис. 2). В області $6 \cdot 10^{16} \le n \le 2 \cdot 10^{19} \text{ cm}^{-3}$ ΔН слабо залежить віл концентрації електронів, однак в околі $n_c \!\approx \! 2 \!\cdot\! 10^{19}\, \mbox{cm}^{-3}\,$ спостерігається різкий стрибок зсуву Найта приблизно на 60 Гс. Характерним для перехідної області є наявність складних спектрів, що складаються здебільшого з двох ліній, які відстоять одна від одної на величину стрибка. Особливо відзначимо, що стрибкоподібне збільшення зсуву Найта в області високих концентрацій супроводжується розширенням резонансних ліній (> 10Гс) і різким скороченням спін-граткової релаксації (T1) порівняно з областю низьких концентрацій. Якщо для останньої насичення ЯМР спостерігається вже при рівнях радіочастотного поля $H_1 \approx 10 \text{ MFc}$, то вище n_c насичення сигналів невідчутне навіть при рівнях $H_1 > 100 \text{ мГс}$. На відміну від РbTe р-типу ΔH в п-РЬТе є парамагнітним у всій області концентрацій (рис. 2).

Зсув Найта і ширина ліній в SnTe. Вперше дослідження ЯМР на ядрах ¹¹⁹Sn і ¹²⁵Te в SnTe були проведені в роботі [9]. Аномально великі зсуви Δ H і ширини резонансних ліній Δ B, особливо на ¹¹⁹Sn, не узгоджувалися із звичайними уявленнями про зонну структуру SnTe. В даній роботі, в зв'язку з інформацією про складну валентну зону SnTe [4], розглядається можливість знаходження критичних точок спектра за концентраційною залежністю зсуву Найта (рис. 3).

Як бачимо, залежність $\Delta H(p) \in$ немонотонною, а з явно вираженими зламами при p₇₇ = (1,14-1,75)·10²⁰ см⁻³; 3,8·10²⁰ см⁻³ і 1,0·10²¹ см⁻³. Як і в n-PbTe, в SnTe зсув $\Delta H > 0$ для всієї області концентрацій. При n > 10²¹ см⁻³ зсув Найта на ядрах ¹¹⁹Sn в SnTe перевищує його значення в металічному олові.

Концентраційна залежність ширини ліній ЯМР

Рис. 3. Концентраційна залежність зсуву Найта на ядрах ¹¹⁹Sn в SnTe при T = 293 K. Стрілкою позначений зсув Найта в металічному олові. $H_{et} = 8512$ Гс.

Рис. 4. Залежність ширини лінії ЯМР ¹¹⁹Sn (*a*) і густини станів $g(p) - (\delta)$ від концентрації дірок в SnTe [4].

на ¹¹⁹Sn (рис. 4, а) практично повторює характер залежності $\Delta H(p)$ (рис. 3). Розрахована залежність густини станів д від концентрації р, яка отримана в роботі [4], наведена на рис. 4, б.

Слід зазначити, що в SnTe поряд із зміною ширини резонансних ліній відбувається перетворення їхньої форми. Для аналізу форми ліній були проведені розрахунки другого (S₂) і четвертого (S₄) моментів кривих. На рис. 5 наведена залежність параметра $\eta = 3(S_2)^2/(S_4)$ від концернтрації дірок в SnTe, що характеризує ступінь відхилення форми лінії від гаусової.

Встановлено, що при $p_{77} \ge 1, 2 \cdot 10^{20} \text{ см}^{-3}$ форма

Рис. 5 Залежність параметра форми лінії η від концентрації дірок в SnTe.

резонансних ліній є близькою до гаусової, що типово для твердих граток. Однак із зменшенням р форма ліній поступово наближається до лоренцової і при $p_{77} = 6,6\cdot 10^{19}$ см⁻³ стає практично лоренцовою ($\eta < 1$). Останнє є доказом рухливості атомів олова при відносно низьких концентраціях дірок. Поки що не зрозуміло, який механізм руху переважає в даному випадку – тунелювання між нееквівалентними, зміщеними, позиціями олова чи рух по вакансіях олова.

IV. Обговорення результатів

Зонна структура телуридів свинцю і олова в області низьких концентрацій носіїв струму добре вивчена. Однак досі не існує теорії, в рамках якої можна би пояснити концентраційні залежності зсуву Найта в широкому інтервалі концентрацій, включаючи і високі $(10^{20} \div 10^{21} \text{ см}^{-3})$. Перш за все це пов'язано з відсутністю експериментальних результатів. В нашій роботі вперше досліджується зсув Найта в максимально досяжній області концентрацій для даних сполук. У відомих роботах [8,10] аналогічні залежності вивчались в РbTе лише при n, $p \le 2 \cdot 10^{19} \text{ см}^{-3}$.

Для пояснення аномальних концентраційних і температурних залежностей кінетичних коефіцієнтів часто використовується двозонна модель валентної зони p-PbTe [2]. В останній передбачається наявність другої валентної Σ-зони, розташованої на 0,05-0,1 еВ нижче основної L-зони [11]. Однак існуючі уявлення про Σ- зону в р-РbTe, як про ізотропну і параболічну зону важких дірок, непридатні для пояснення зміни знака зсуву Найта на ядрах ²⁰⁷Pb в p-PbTe (рис. 1). Для пояснення інверсії знака ДН в рамках даної моделі необхідно припустити, що надтонкі поля, які створюються дірками Σ - і L -зони, мають протилежний напрямок. З ростом концентрації р зсув буде визначатися, в основному, параметрами спектра дірок Σ-зони. Але в цьому випадку великі зсуви ΔΗ означають наявність у Σ-зоні носіїв з великими ефективними g-факторами i, отже, з малими ефективними масами, що не узгоджується з літературними даними (зсилки [5-8] з роботи [2]).

Великі значення зсуву Найта в області низьких концентрацій дірок можна пояснити на основі простої зонної моделі p-PbTe. Відомо, що хвильові функції L⁶⁺, що описують вершину валентної зони, мають s-складову на вузлах ²⁰⁷Pb [10]. Тому

додаткове магнітне поле (Δ H), створюване вільними носіями на ядрах ²⁰⁷Pb, обумовлюється контактною надтонкою взаємодією Фермі. У даному випадку вираз для зсуву Найта має вигляд [10]:

$$\Delta H_{\text{cont}} = \frac{4}{3} g_s g_v \mu_b^2 \rho_v (E_f) (\cos^2 \theta^+) < R \left| \Delta r \right| R >, \qquad (1)$$

де g_s — g-фактор вільного електрона, g_v — ефективний g-фактор носіїв валентної зони, $\rho_v(E_f)$ — густина станів на рівні Фермі, μ_b — магнетон Бора, множник $(\cos^2\theta^+) < R \left| \Delta r \right| R >$ — релятивістський еквівалент $\| \psi(0) \|^2$, що визначає імовірність перебування носіїв на ядерних вузлах.

Великі зсуви, що спостерігаються в області низьких концентрацій (рис. 1), вказують на значну s-складову хвильової функції дірок на вузлах свинцю. Формула (1) справедлива лише для носіїв, які знаходяться біля вершини валентної зони. При цьому діамагнітний зсув на 207 Pb в p-PbTe обумовлений від'ємним знаком компонентів ефективного g-фактора дірок ($g_v^{II} = -48 \pm 5$ і $g_v^{-1} = -19,6$) [10].

Проте великі надтонкі поля у вузькощілинних напівпровідниках не завжди є доказом контактної взаємодії ядер з носіями струму. В роботах [8,10] для пояснення зсуву Найта в p-PbTe в області більш $3 \cdot 10^{18} \le p \le 2 \cdot 10^{19} \text{ cm}^{-3}$ концентрацій високих пропонується враховувати вплив найближчих зон на формування надтонкого поля на ядрах ²⁰⁷Pb, без залучення Σ-зони. Такий вплив проявляється в змішуванні станів внаслідок сильного спінорбітального зв'язку, характерного для сполук типу РbTe. Через релятивістські ефекти надтонкі поля на ядрах ²⁰⁷Pb, викликані спін-орбітальною (ΔHorb) і диполь-дипольною (Δ Hdip) взаємодіями, можуть перевищити контактне поле Δ Hcont.

На валентну зону найбільший вплив має найближча зона провідності, де електрони переважно знаходяться у р-стані. Тоді, згідно з [10], визначальним надтонким полем на 207 Pb буде ΔH_{orb} , приблизно рівне ΔH_{dip} :

$$\Delta H_{orb} = \frac{8}{3} g_s g_c \mu_b^2 \rho_c(E_f) (f(r) | r^{-3} | f(r)), \qquad (2)$$

де g_c – ефективний g – фактор для електронів у зоні провідності, $\rho_c(E_f)$ – густина станів на рівні Фермі в зоні провідності, $(f(r)|r^{-3}|f(r))$ – густина імовірності перебування електронів у р-стані на ядерних вузлах.

Оскільки поверхні постійної енергії в зоні Бріллюена представляють собою еліпсоїди, то ефективні g-фактори складаються з лінійної комбінації повздовжньої (g₁) і перпендикулярної (g₁) компонент. Для валентної зони g^v_{eff} = 1/3(g^v₁ + +2g^v_⊥) < 0, причому g^v₁₁ = -48 ± 5 і g^v_⊥ = -19.6; для

зони провідності $g_{eff}^{c} = 1/3(g_{\parallel}^{c} - 2g_{\perp}^{c}) > 0$, де $g_{\parallel}^{c} = 57,5 \pm 2$ і $g_{\perp}^{c} = -15$ [10].

Якщо виходити із запропонованої вище моделі [8,10], можна допустити, що із збільшенням концентрації ($p>2\cdot10^{19}$ см⁻³) значно зростає внесок р-станів зони провідності у валентну зону. Формально це можна розглядати як появу носіїв з додатнім g_c-фактором ($g^{c}_{11}-2g^{c}_{\perp}$) > 0. Тому внесок р-станів у надтонке поле буде протилежним до від'ємного контактного поля. При деяких значеннях р відбудеться повна компенсація від'ємного зсуву Найта, а далі і перехід його в область додатних значень.

Знак зсуву Найта на ²⁰⁷Рb в n-PbTe і його величина в інтервалі $6 \cdot 10^{16} \le n < 2 \cdot 10^{19} \text{ см}^{-3}$ узгоджується з результатами роботи [8]. Набагато важче пояснити появу стрибка на залежності $\Delta H(n)$ в околі $n \approx 2.10^{19} \text{ см}^{-3}$ (рис. 2), який виявлений нами вперше. Нам невідомі теоретичні роботи, в яких передбачалося б існування стрибкоподібного збільшення зсуву Найта в n-PbTe. Можна лише припустити, що такий ефект, що супроводжується розширенням ліній ЯМР і різким скороченням часу спін-граткової релаксації T₁, пов'язаний 3 критичною зміною параметрів енергетичного спектра в зоні провідності. При цьому ми не спостерігали будь-яких особливостей в кінетичних характеристиках зразків, а рентгенодифрактометричний аналіз показав незмінність параметра кристалічної гратки (до і після стрибка) у межах похибки $\delta = \pm 0,0005$ Å.

Аналіз концентраційної залежності $\Delta H(p)$ на ¹¹⁹Sn в SnTe (рис. 3) становить особливий інтерес. Це пояснюється тим, що саме на SnTe була експериментально підтверджена модель складної структури валентної зони, запропонованої для сполук A^4B^6 в роботах [2,3]. Виявлені особливості у вигляді трьох зламів на концентраційній залежності $\chi_{40K}(p)$ були ідентифіковані як такі, що відповідають критичним точкам валентної зони SnTe.

Злами, що спостерігаються на залежності $\Delta H(p)$ на ¹¹⁹Sn при $p_{c1} = 1,08 \cdot 10^{20} \text{ см}^{-3}$; $p_{c2} = 2,28 \cdot 10^{20} \text{ см}^{-3}$ і $p_{c3} = 6 \cdot 10^{20} \text{ см}^{-3}$ (рис. 3), також вказують на складну структуру валентної зони SnTe і обумовлені проходженням рівня Фермі через критичні точки діркового спектра. Дане твердження випливає з кореляції, яка існує між залежностями $\chi(p)$ і $\Delta H(p)$: злами на кривих відповідають

практично одним і тим же критичним концентраціям. (Як і в роботі [4], на шкалі концентрацій відкладене значення $p = 0,6 \cdot p_{77}$). Крім того, спостерігається взаємозв'язок між концентраційними залежностями ΔB і g(p) (рис. 4, а і б). Це означає, що зміна густини станів, яка пов'язана із зміною топології поверхні Фермі, може проявлятися як на залежності $\chi(p)$, так і $\Delta H(p)$, і $\Delta B(p)$.

Отже, два незалежних методи підтвердили існування особливих точок у спектрі дірок SnTe при $p_{c1} = (1,08-1,1) \cdot 10^{20} \text{ cm}^{-3}; p_{c2} = (2,28-2,3) \cdot 10^{20} \text{ cm}^{-3}$ і $p_{c3} = (4,9-6,0) \cdot 10^{20} \text{ cm}^{-3}$, що відповідають [4] Σекстремуму, сідловій точці в напрямку ΣL і Δекстремуму валентної зони.

З вище приведеного випливає, що особливості, які проявляються на залежності $\Delta H(p)$ в p-PbTe (рис. 1), – злам при $p_{c1} = 8 \cdot 10^{18} \text{ см}^{-3}$, максимум при $p_{c2} \approx 2 \cdot 10^{19} \text{ см}^{-3}$ та інверсія знака при $p_{c3} \approx 6 \cdot 10^{19} \text{ см}^{-3}$ – п найбільш імовірно, пов'язані із зміною густини станів при проходженні рівня Ферми через критичні точки спектра дірок. В n-PbTe особливою точкою можна вважати $n_c \approx 2 \cdot 10^{19} \text{ см}^{-3}$.

V. Висновки

1. На концентраційній залежності зсуву Найта на ²⁰⁷Рb в p-PbTe виявлено особливості: зміну кутового коефіцієнта на залежності ΔH(p) при $p = 8 \cdot 10^{18} \text{ см}^{-3}$, екстремум при $p \approx 2 \cdot 10^{19} \text{ см}^{-3}$ та інверсію знака зсуву при $p \approx 6 \cdot 10^{19} \text{ см}^{-3}$, який при $p > 6 \cdot 10^{20} \text{ см}^{-3}$ стає парамагнітним.

2. Зсув Найта в n-PbTe в усій області концентрацій є парамагнітним. При $n_c \approx 2 \cdot 10^{19}$ см⁻³ вперше спостерігається стрибкоподібне збільшення ΔH величиною ≈ 60 Гс, що супроводжується розширенням резонансних ліній і різким скороченням часу спін-граткової релаксації T₁.

3. На прикладі SnTe показана принципова можливість знаходження критичних точок спектра, виходячи із концентраційних залежностей зсуву Найта і ширини резонансних ліній. Це дає підставу вважати, що критичним точкам в спектрі дірок p-PbTe відповідають концентрації $p_{c1} \approx 8 \cdot 10^{18} \text{ см}^{-3}$, $p_{c2} \approx 2 \cdot 10^{19} \text{ см}^{-3}$ і $p_{c3} \approx 6 \cdot 10^{19} \text{ см}^{-3}$. Особлива точка в зонному спектрі n-PbTe проявляється при $n_c \approx 2 \cdot 10^{19} \text{ см}^{-3}$.

О.Г. Хандожко – кандидат фізико-математичних наук, доцент кафедри радіотехніки; **В.В. Слинько** – кандидат фізико-математичних

наук, старший науковий співробітник;

Є.І. Слинько – доктор фізико-математичних наук, завідувач відділу вузькощілинних напівпровідників.

- [1] B. Sapoval. Knight shifts and band structure in lead telluride by helicon-nuclear spin interaction // *Journal de Physique*. **29**(C4), pp. 133-136 (1968).
- [2] О.Е. Квятковский. Строение валентной зоны соединений А^{IV}В^{VI}// ФТТ, **32**(10), сс. 2862-2868 (1990).
- [3] О.Е. Квятковский. Определение критических точек зонного спектра по концентрационным и температурным зависимостям магнитной восприимчивости в слабом магнитном поле // ФТТ. 32(9), сс. 2533-2542 (1990).
- [4] Г.С. Бушмарина, И.А. Драбкин, М.А. Квантов, О.Е. Квятковский. Магнитная восприимчивость в слабом магнитном поле и строение валентной зоны теллурида олова // ФТТ. 32(10), сс. 2869-2880 (1990).
- [5] К.Д. Товстюк, Е.И. Слынько, А.Г. Хандожко. Особенности ядерного магнитного резонанса в РbTе ртипа // УФЖ. 17(10), сс. 1745-1747 (1972).
- [6] А.с. 1300354 СССР, МКИ⁴ G 01 No 24/08. Способ исследования полупроводниковых кристаллов методом ЯМР и спектрометр для его осуществления / Е.И. Слынько, А.Г. Хандожко, С.Д. Летюченко. (СССР). №3930672; заявлено 12.07.85; опубл.30.03.87, Бюлл. № 12.-175 с.
- [7] О.Г. Хандожко, Є.І. Слинько. Модифікований індукційний давач ядерного магнітного резонансу для спектрометра широких ліній // Вісник Держ.ун-ту "Львівська політехніка", Електроніка. **397**, сс. 54-57 (2000).
- [8] C.R. Hewes, M.S. Adler, S.D. Senturia. NMR studies in PbTe and Pb_{1-x}Sn_xTe: an experimental determination of k-p band parameters and magnetic hyperfine constants // *Phys.Rev.B.* 7(12), pp. 5195-5212 (1973).
- [9] В.В. Слынько, Е.И. Слынько, А.Г. Хандожко, Ю.К. Выграненко. Особенности спектров ядерного магнитного резонанса¹¹⁹Sn и ¹²⁵Te в SnTe и SnTe: Mn // ФТП. **31**(10), сс. 1187-1191 (1997).
- [10] B. Sapoval, J.Y. Leloup. Knight shifts in multivalley semiconductors // Phys.Rev.B., 7(12), pp. 5272 5276 (1973).
- [11] R.S. Allgaier. Valence bands in lead telluride // J. Appl. Phys. 32(10), pp. 2185-2189 (1961).

A.G. Khandozhko¹, V.V. Slynko², E.I. Slynko²

Knight shift and band structure of PbTe and SnTe

 ¹Chernivtsi National University, Radiotechn. Dept, 58012, Chernivtsi, 2, Kotsyubynskiy Str. tel. (03722) 4-24-36, E-mail: rmd@chnu.cv.ua
²Chernivtsi Department of Institute of Material Sceince Problems NAS Ukraine, 58001, Chernivtsi, 5, 1. Vilde Str., tel. (03722) 2-51-55, E-mail: chimsp@unicom.cv.u

The results of Knight shift investigations on ²⁰⁷Pb nuclei in both n- and p-type PbTe and on ¹¹⁹Sn in p-SnTe in the wide region of charge carrier concentrations $(6.6 \cdot 10^{16} \le p \le 3.6 \cdot 10^{21} \text{ cm}^{-3})$ are presented. In samples of p-PbTe the Knight shift is diamagnetic in the interval $6 \cdot 10^{16} \le p \le 6 \cdot 10^{19} \text{ cm}^{-3}$. At $p \approx 2 \cdot 10^{19} \text{ cm}^{-3}$ ΔH reaches maximal value, and at $p \approx 6 \cdot 10^{19} \text{ cm}^{-3}$ an inversion of the ΔH sign takes place. In n-PbTe the Knight shift is paramagnetic in all interval of concentrations. And at $n \approx 2 \cdot 10^{19} \text{ cm}^{-3}$ the leap of ΔH is observed ($\approx 60 \text{ G}$). In SnTe the shift ΔH is only paramagnetic. It is established, that the breaks on nonmonotonic dependence $\Delta H(p)$ correspond to critical points in the band spectrum of SnTe. The applicability of existing models of hole spectrum for an explanation of Knight shift in PbTe is considered.