УДК 661.11.01

Т.М. Мельниченко, В.І. Феделеш, І.М. Юркін, Т.Д. Мельниченко, В.М. Різак

Внутрішній тиск, мікротвердість та межа плинності халькогенідних стекол

Ужгородський національний університет вул. Волошина, 54; Ужгород, 88 000 E-mail: <u>ipk@univ.uzhgorod.ua</u>

За даними про пружні сталі розраховано максимальний внутрішній тиск халькогенідних стекол р_{іт} та межу плинності σ_n . Показано, що величина р_{іт} не у всіх стекол збігається з мікротвердістю за Вікерсом Н. Межа плинності (пластичності) σ_n набагато менша за мікротвердість та максимальний внутрішній тиск р_{іт}. Пружні сталі та параметри теорії флуктуаційного вільного об'єму досліджуваних стекол в значній мірі залежать від величини середнього координаційного числа Z_{ср.}

Ключові слова: халькогенідні стекла, критична деформація, межа пластичності, внутрішній тиск, вільний об'єм.

Стаття поступила до редакції 17.11.2001; прийнята до друку 3.01.2002

I. Вступ

Внутрішній тиск характеризує міжатомну взаємодію і є пружною реакцією гратки на деформацію всестороннього розтягу або стиску [1,2]. За визначенням він дорівнює похідній по об'єму за незмінної температури $p = (\partial U/\partial V)_T$, де величина U(V) складається із енергій зв'язків, які об'єднують атоми в тверде тіло.

За одновісного розтягу твердого тіла внутрішній тиск р_і, котрий намагається повернути тіло в недеформований стан, за абсолютним значенням рівний зовнішньому механічному напруженню

$$\mathbf{p}_{i} = \mathbf{E}\left(\frac{\Delta \mathbf{r}}{\mathbf{r}_{o}}\right),\tag{1}$$

де Е – миттєвий повздовжній модуль пружності, $(\Delta r/r_o)$ – відносне подовження міжатомного зв'язку, r_o – середня рівноважна віддаль між атомами.

В роботі для розрахунку максимального внутрішнього тиску $p_{im} = p_i(r_m)$, який відповідає граничній деформації міжатомного зв'язку Δr_m , в халькогенідних стеклах, застосовано підхід. апробований для кисневмісних стекол [2-4] Результати обчислень p_{im} порівнюються 3 відповідними значеннями мікротвердості та межі пластичності (плинності) стекол систем Ge-As-S, As-Se, Cd-As. Ці системи вибрані з огляду на те, що сполуки, які в них утворюються, характеризуються переважно ковалентним типом зв'язку, а середнє координаційне число Z_{cp} змінюється від 2,4 в подвійних халькогенідних стеклах до Z_{cp} = 4 в стеклах системи Cd-As. Тому цікаво відслідкувати залежність досліджуваних параметрів від хімічного складу (типу структурних одиниць) скла.

II. Теоретичні відомості

З теорії максимального внутрішнього тиску відомо, що відносна гранична деформація міжатомного зв'язку ($\Delta r_m/r_o$) може бути записана через параметр Грюнайзена γ [1,2]:

$$\frac{\Delta \mathbf{r}_{\rm m}}{\mathbf{r}_{\rm o}} = \frac{1}{6\gamma}.$$
 (2)

Припускаючи, що закон Гука (1) справедливий до граничної деформації (2), для оцінки максимального внутрішнього тиску твердого тіла в [1-4] отримали співвідношення:

$$p_{im} \cong \frac{1}{6\gamma} E.$$
 (3)

В рамках теорії флуктуаційного вільного об'єму [3,4] встановлено безпосередній зв'язок параметра Грюнайзена γ скловидних систем з коефіцієнтом Пуассона μ і об'ємною часткою флуктуаційного вільного об'єму f_g = (V_f/V)_{Tg}, який заморожується при температурі склування T_g:

$$\gamma = \frac{2\ln(1/f_g)}{9} \cdot \frac{1+\mu}{1-2\mu}$$
(4)

Підставивши (4) у співвідношення (3), автори [3] отримали рівняння для максимального внутрішнього тиску скловидних твердих тіл:

$$p_{im} = A \frac{(1-2\mu)}{6(1+\mu)} E,$$
 (5)

де величина $A = 9/[2ln(1/f_g)]$ для стекол одного виду стала і близька до одиниці. Оскільки для більшості

стекол значення f_g невідоме, коефіцієнт A у розрахунках прирівнюють до одиниці (A \cong 1). В рамках такого наближення максимальний внутрішній тиск (5) є функцією тільки пружних сталих [3]:

$$p_{\rm im} \cong \frac{(1-2\mu)}{6(1+\mu)} E,\tag{6}$$

У такому ж вигляді рівняння для розрахунку p_{im} отримано і авторами [2,5] шляхом використання потенціалу Мі (W = Ar^{-m} + B r⁻ⁿ):

$$p_{im} = \frac{1}{mn} E, \quad (7)$$

та напівемпіричного співвідношення між показниками потенціалу і коефіцієнтом Пуассона µ [6].

В [7] показано, що величина (1/mn) у співвідношенні (7) за змістом є критична деформація, за якої тверде тіло втрачає стійкість при зсуві. А максимальний внутрішній тиск p_{im} (7) за величиною збігається з межею плинності (пластичності) $\sigma_n \cong p_{im}$ [8].

Об'ємна пластична деформація за всестороннього розтягу або стиску в три рази більша за лінійну $\left(\frac{V_h}{v}\right) = 3\varepsilon_b$, тобто пластична

деформація скловидних твердих тіл ε_b обернено пропорційно залежить від величини параметра Грюнайзена [9]:

$$\varepsilon_{\rm b} = \frac{\ln(1/f_{\rm g})}{9\gamma} \tag{8}$$

У процесі пластичної деформації органічних полімерів відбувається неперервна зміна їх структури, яка головним чином, виражається через зростання ступеня ангармонізму міжмолекулярних зв'язків і, як наслідок, послаблення міжмолекулярної взаємодії [3,4,8]. Це можна врахувати взявши до уваги зв'язок параметра Грюнайзена γ , який характеризує ангармонізм міжмолекулярних зв'язків, з коефіцієнтом Пуассона μ (4). Межа плинності σ_{π} відповідає величині максимального внутрішнього тиску деформованої структури полімера p_b ($\sigma_{\pi} = p_b$), яка значно менша за p_{im} недеформованої структури ($p_b = p_{im}$ [1--2 $\epsilon_b\gamma$] = p_{im} [1 – (2/9) ln (1/f_g)]).

Для неорганічних стекол за σ_n приймають їх мікротвердість за Вікерсом Н. Зменшення p_{im} до рівня межі плинності $p_b = \sigma_n$ виражається співвідношенням [3,4,8]:

$$\sigma_{\pi} = p_{im} [1 - \frac{2}{9} \ln(1/f_g)]$$
(9)

В рамках концепції вільного об'єму величина максимального внутрішнього тиску $p_{im} = E_h / V_h$ обчислюється з рівняння [2]:

$$p_{im} = \frac{f_g \cdot \ln(1/f_g)}{3(1-2\mu)} E.$$
 (10)

Нижче наведено результати застосуван-ня рівнянь (5), (6), (9) та (10) для халь-когенідних стекол та близьких за властивостями до потрійних халькогенідів стекол системи Cd-As. Необхідні дані про H, T_g, E, μ та параметри теорії вільного об'єму (табл. 1, 2) взято з публікацій [10,11].

Ш. Обговорення результатів

Як видно з табл. З результати обчислень p_{im} за рівняннями (6) і (10) узгоджуються між собою для

Рис. 1. Корелляція між максимальним внутрішнім тиском р_{іт} і мікротвердістю Н халькогенідних стекол. Номери точок відповідають номерам стекол в табл. 1. 1 – As₁₀ S₉₀; 2 – As₂₀S₈₀; 3 – As₂₈S₇₂; 4 – As₄₀S₆₀; 5 – As₀₅Se₉₅; 6 – As₁₀ Se₉₀; 7 – As₂₀ Se₈₀; 8 – As₃₀ Se₇₀; 9 – As₄₀ Se₆₀; 10 – As₅₀Se₅₀; 11 – Ge₀₇ As₃₂ S₆₁; 12 – Ge₁₃ As₂₄ S₆₃; 13 – Ge₂₀ As₁₆ S₆₄; 14 – Ge₂₆ As₀₈ S₆₆; 15 – Ge_{33.3} S_{66.6}; 16 – Cd ₄₀ As₆₀; 17 – Cd_{33.3} As_{66.7}; 18 – Cd₃₀ As₇₀.

Таблиця 1

i pionansena j erekon b eneremax Oe-AS-B ta Cu-AS								
N⁰	Склад	T _g ,	Z_{cp}	H·10 ⁻⁸ ,	μ	E·10 ⁻⁸ ,	γ	
п/п	ат. %	К		Па		Па		
1	$As_{10}S_{90}$	302	2,10	0,8	0,376	55,0	6,80	
2	$As_{20}S_{80}$	362	2,20	5,0	0,305	52,0	3,21	
3	As ₂₈ S ₇₂	408	2,30	9,5	0,289	110,0	2,77	
4	$As_{40}S_{60}$	459	2,40	11,0	0,290	162,1	2,80	
5	$As_{05}Se_{95}$	316	2,05	6,1	0,326	103,4	3,91	
6	$As_{10}Se_{90}$	353	2,10	6,4	0,331	109,5	4,09	
7	$As_{20}Se_{80}$	378	2,20	8,5	0,308	130,0	3,29	
8	As ₃₀ Se ₇₀	406	2,30	9,8	0,290	149,8	2,80	
9	$As_{40}Se_{60}$	456	2,40	14,7	0,260	171,2	2,16	
10	$As_{50}Se_{50}$	442	2,50	9,5	0,300	129,3	3,06	
11	Ge07As32 S61	533	2,46	18,64	0,280	170,2	2,56	
12	Ge ₁₃ As ₂₄ S ₆₃	533	2,50	20,11	0,250	181,5	1,99	
13	Ge20As16 S64	593	2,56	21,09	0,232	192,9	1,72	
14	Ge26As08 S66	633	2,60	22,56	0,177	208,9	1,11	
15	Ge _{33.3} S _{66.6}	758	2,66	26,49	0,149	200,4	0,88	
16	$Cd_{40}As_{60}$	563	3,80	31,00	-0,113	681,1	0,72	
17	Cd _{33.3} As _{66.7}	568	4,00	32,30	-0,104	650,0	0,74	
18	Cd ₃₀ As ₇₀	570	4,09	30,00	-0,101	637,5	0,75	

Мікротвердість H, температура склування T_g, середнє координаційне число Z_{cp}, пружні модулі та параметр Грюнайзена у стекол в системах Ge-As-S та Cd-As

Таблиця 2

Відносна гранична деформація розриву зв'язку між частинками є, лінійна деформація скла єь та параметри теорії вільного об'єму для стекол в системах Ge-As-S та Cd–As

Склад	З	Α	ε _b	$n_{\rm h} \cdot 10^{-26}$,	$\mathbf{f}_{\mathbf{g}}$	E _h ,	$V_{h} \cdot 10^{6}$,	
ат. %				м ⁻³		кЛж	M ³	
						<u> </u>		
						моль	моль	
As ₁₀ S ₉₀	0,03	0,82	0,11	0,3	0,004	13,8	82,6	
$As_{20} S_{80}$	0,05	1,04	0,14	3,0	0,014	13,0	28,2	
$As_{28} S_{72}$	0,06	1,10	0,15	4,4	0,017	13,8	23,1	
$As_{40} S_{60}$	0,05	1,10	0,15	5,7	0,017	15,4	17,6	
$As_{05} Se_{95}$	0,04	0,97	0,13	2,2	0,010	12,1	26,8	
$As_{10} Se_{90}$	0,04	0,96	0,13	1,2	0,009	13,8	29,5	
$As_{20} Se_{80}$	0,05	1,04	0,14	3,5	0,013	13,6	21,5	
As ₃₀ Se ₇₀	0,05	1,10	0,15	6,0	0,017	13,8	17,0	
As_{40} Se ₆₀	0,06	1,22	0,15	11,5	0,025	14,0	12,9	
$As_{50} Se_{50}$	0,05	1,06	0,14	4,0	0,015	15,6	23,4	
$Ge_{07} As_{32} S_{61}$	0,06	1,25	0,15	6,1	0,019	17,5	18,0	
Ge ₁₃ As ₂₄ S ₆₃	0,07	1,25	0,16	12,0	0,028	16,5	13,6	
Ge ₂₀ As ₁₆ S ₆₄	0,07	1,33	0,16	18,0	0,035	16,6	11,9	
Ge ₂₆ As ₀₈ S ₆₆	0,09	1,61	0,17	24,3	0,065	14,4	7,5	
$Ge_{33,3}$ $S_{66,6}$	0,10	1,84	0,16	66,0	0,088	15,3	7,5	
$Cd_{40} As_{60}$	0,23	0,91	0,76	1,2	0,007	22,9	34,3	
Cd _{33.3} As _{66.7}	0,23	0,92	0,73	1,4	0,008	23,1	34,7	
Cd ₃₀ As ₇₀	0,22	0,92	0,70	1,4	0,008	23,1	34,9	

халькогенідних стекол. В стеклах системи Cd-As значення p_{im} , які обчислювалися із формули (10), на багато менші за значення p_{im} , які обчислювалися із формули (6). Обчислені значення максимального внутрішнього тиску за даними про коефіцієнт Пуассона μ , модуль пружності Е та частку флуктуаційного вільного об'єму f_g (формула (5)) дещо вищі для халькогенідних стекол і менші для стекол в системі Cd-As.

На рис. 1 наведено співвідношення максимального внутрішнього тиску р_{іт} та мікротвердості Н стекол досліджуваних систем. Значення величини р_{іт}, які були обчислені з

рівняння (6), для багатьох стекол в межах розкиду близькі до їх мікротвердості ($p_{im} \cong H$). Лінія, яка проведена на рис. 1 відповідає прямій з нахилом $p_{im}/H = 1$. В стеклах системи Cd-As максимальний внутрішній тиск p_{im} значно вищий за їх мікротвердість H (табл. 1, 2). З ростом вмісту миш'яку в стеклах As-S (Se) коефіцієнт Пуассона µ плавно зменшується (табл. 1) до мінімальних значень при вмісті миш'яку 40 % ат. ($\mu_{As2S3} = 0,290$ і $\mu_{As2Se3} = 0,260$) і знову зростає за подальшого збільшення вмісту миш'яку в склі. Модуль пружності E проходить через максимум у склі зі складом 40 ат. % As 60 ат. % Se(S). У зв'язку з цим

Рис. 2. Кореляція між мікротвердістю і температурою склування халькогенідних стекол. Номери точок відповідають номерам стекол в таблиці 1. 1 – As₁₀S₉₀; 2 – As₂₀S₈₀; 3 – As₂₈S₇₂;

 $\begin{array}{l} 4-As_{40}S_{60};\,5-As_{05}Se_{95};\,6-As_{10}\,Se_{90};\,7-As_{20}Se_{80};\,8-As_{30}Se_{70};\,9-As_{40}Se_{60};\,10-As_{50}Se_{50};\\ 11-Ge_{07}\,As_{32}\,S_{61};\,12-Ge_{13}\,As_{24}\,S_{63};\,13-Ge_{20}\,As_{16}\,S_{64};\,14-Ge_{26}\,As_{08}\,S_{66};\,15-Ge_{33,3}\,S_{66,6}. \end{array}$

і максимальний внутрішній тиск цих стекол також проходить через максимум. Таким чином веде себе і їх мікротвердість [12]. Величина максимального внутрішнього тиску досить близька ЛО мікротвердості в стеклах подвійних халькогенідних систем ($p_{im}/H = 0.63 \div 0.92$). У стеклах потрійних систем Ge-As-S не спостерігається такої закономірності. В цій системі за малого вмісту миш'яку максимальний внутрішній тиск великий і за величиною близький до мікротвердості. З ростом вмісту миш'яку величина р_{іт} зменшується і зменшується швидше, ніж мікротвердість Н, про що свідчить зменшення тангенсу кута нахилу залежності р_{іт} – Н від р_{іт}/Н = 0,85, у склі з максимальним вмістом миш'яку, до p_{im}/H = 0,53, у склі з мінімальним вмістом миш'яку.

Межа пластичності (плинності) σ_{n} , яка була обчислена із формули (9), не співпадає з мікротвердістю Η досліджуваних стекол (табл. 1, 3). Розбіжність цих величин зростає із збільшенням жорсткості сітки скла. Якщо в халькогенідних стеклах межа пластичності складає половину величини мікротвердості, то для стекол системи Cd-As за абсолютною величиною вона в кілька разів менша за Н. Причиною такої розбіжності, можливо, € послаблення міжмолекулярних зв'язків у процесі пластичної деформації. Оцінка оп із формули (9) відноситься до не деформованої структури, а експериментальні дані – до деформованої структури.

Цікаво зазначити, що цей фактор не відіграє важливої ролі в неорганічних кисневмісних стеклах, де пластична деформація пов'язана головним чином з природою іонних зв'язків [8]. На відміну від оксидних багатокомпонентних стекол в халькогенідних стеклах вклад центральних сил зовсім незначний [13].

Пластична деформація є досліджуваних стекол

дещо вища (табл. 2) за є_b скловидних полімерів $(\varepsilon_b \cong 0, 1 \ [4])$. Крім того, граничне подовження міжатомних зв'язків є у халькогенідних стеклах змінюється в залежності від складу від 0,03 до 0,10 і в два рази більше в склах системи Cd-As. Якщо граничне подовження міжатомних зв'язків є халькогенідних стекол близьке до граничного подовження міжатомних зв'язків в аморфних полімерах ($\epsilon \cong 0, 1$ [2]), то значення ϵ у стеклах системи Cd-As близькі до є для металів, іонних кристалів та лужно-силікатних стекол ($\varepsilon \cong 0,2$ [2,14]). Цей факт автори [14] пояснюють тим, що параметр у в цих матеріалах однаковий і відображає ангармонізм коливання іонної підгратки [2,14], а у ≈ 4 в аморфних полімерах пов'язаний з ангармонізмом міжмолекулярних зв'язків. Отже, критичні деформації є_ь (у) залежать від хімічної природи міжатомних і міжмолекулярних зв'язків. Для одного класу (структурного типу) стекол вона є величиною сталою, що і спостерігається в нашому випадку $\varepsilon_b = f(\varepsilon)$: в халькогенідних стеклах, сітка яких утворюється за рахунок ковалентних зв'язків, $\epsilon_b \cong 0,1,$ а в стеклах системи Cd-As, де ε іонна підгратка [15,16], - ε_b ≅ 0,2.

Величина внутрішнього тиску визначається потенціальним полем, що створюється найближчим оточенням атомів (ближнім порядком), тому р_{іт} чутливе до структурних змін і тісно пов'язане з властивостями твердих тіл, які зумовлюються міжатомною взаємодією (наприклад, для багатьох неорганічних стекол спостерігається лінійна кореляція між р_{іт}, H i T_g [2,4]). На рис. 2 і 3 наведено залежність T_g від максимального внутрішнього тиску та мікротвердості для халькогенідних стекол. Як видно з рисунків, ця залежність лінійна. Відношення H/T_g y подвійних системах As-S(Se) змінюється від 0,02 10⁷ Па/К до 0,33 10⁷ Па/К, для потрійних халькогенідів складає

Рис. 3. Кореляція між максимальним внутрішнім тиском і температурою склування. Номери точок відповідають номерам стекол в табл. 1. 1 – As₁₀ S₉₀; 2 – As₂₀ S₈₀; 3 – As₂₈S₇₂; 4 – As₄₀ S₆₀; 5 – As₀₅Se₉₅; 6 – As₁₀ Se₉₀; 7 – As₂₀ Se₈₀; 8 – As₃₀ Se₇₀; 9 – As₄₀ Se₆₀; 10 – As₅₀ Se₅₀; 11 – Ge₀₇ As₃₂ S₆₁; 12 – Ge₁₃ As₂₄ S₆₃; 13 – Ge₂₀ As₁₆ S₆₄; 14 – Ge₂₆ As₀₈ S₆₆; 15 – Ge_{33,3} S_{66,6}.

Таблиця 3

1.C V	· · · ·		•		0		C 1 4
Максимальний внул	гинни ті	ICK D TA	межа пластичності	σ стекоп в	системах (і	ie-As-N Ta (D'd-As
TVIGROPHING IDITITI DITY	$1 p_1 m_1 m_1 m_1$	$10 \text{ K} p_{\text{Im}} 1 \text{ a}$			CHUICMUA O	10 115 D 10	Cu 115

Склад	p _{im} /T _g	H/T _g	$p_{\rm m}$	p_{im}	p_{im}	σ_{π}	p _{im} /H
			(10)	(0)	(3)		
ат. %	10 ⁷ , Па/К		·10 ⁻⁸ , Па				
$As_{10}S_{90}$	0,05	0,02	1,6	1,6	1,4	-0,40	2,00
$As_{20}S_{80}$	0,13	0,14	4,6	4,6	4,8	0,24	0,92
$As_{28}S_{72}$	0,15	0,17	6,0	6,0	6,6	0,57	0,63
$As_{40}S_{60}$	0,19	0,24	8,8	8,8	9,9	0,83	0,80
$As_{05}Se_{95}$	0,14	0,09	4,5	4,5	4,4	-0,14	0,74
$As_{10}Se_{90}$	0,13	0,18	4,7	4,7	4,5	-0,19	0,73
$As_{20}Se_{80}$	0,17	0,24	4,6	6,4	6,6	0,19	0,75
$As_{30}Se_{70}$	0,20	0,27	8,1	8,1	8,9	0,73	0,82
$As_{40}Se_{60}$	0,24	0,33	10,9	10,9	12,9	1,96	0,74
$As_{50}Se_{50}$	0,15	0,22	6,6	6,6	7,0	0,40	0,70
$Ge_{07}As_{32}S_{61}$	0,18	0,35	9,8	9,8	11,0	1,20	0,53
$Ge_{13}As_{24}S_{63}$	0,23	0,36	12,1	12,1	15,1	2,49	0,65
$Ge_{20}As_{16}S_{64}$	0,24	0,36	14,0	14,0	18,9	3,57	0,70
$Ge_{26}As_{08}S_{66}$	0,30	0,36	19,1	19,1	31,6	7,50	0,85
$Ge_{33,3}S_{66,6}$	0,26	0,35	20,4	20,0	37,0	9,40	0,77
$Cd_{40}As_{60}$	0,29	0,59	6,7	156,9	142,0	-16,10	14,50
Cd _{33,3} As _{66,7}	0,28	0,59	6,6	146,2	133,0	-10,80	4,53
Cd ₃₀ As ₇₀	0,26	0,59	6,6	142,1	133,0	-10,41	4,73

0,37·10⁷ Па/К, а для стекол системи Cd-As – 0,60·107 Па/К. Відношення Н/Т_д, обчислене із експериментальних даних про Н і Т_д, добре узгоджується 3 результатами обчислень $p_{im}/T_g = Rln(1/f_g)/V_h$ співвідношення лля халькогенідних стекол і приблизно в два рази більше для стекол Cd-As (табл. 3). Величина Н/Т_в для досліджуваних стекол попадає в інтервал значень між значеннями, які характерні для $(0,10-0,25\cdot10^7 \text{ Ha/K}),$ лінійних структур i значеннями для стекол з просторово-розгалуженою структурою (0,50-0,70·10⁷ Па/К).

Сполуки, які утворюються в системі Cd-As, аналогічно до халькогенідних, характеризуються переважно ковалентним типом зв'язку. Для них характерна тетраедрична координація фрагментів гратки. Середнє координаційне число Z_{cp} , у стеклах системи Cd-As (Z_{cp} =4) значно перевищує середнє

координаційне число двокомпонентних халькогенідів ($Z_{cp} = 2,4$) і близьке до середнього координаційного числа сплавів системи Ge-As-S ($2,1 \le Z_{cp} \le 4$).

Звертає на себе увагу несуттєва зміна величини пружних модулів і температури склування із зміною складу (структури), що, очевидно, пояснюється впливом не тільки енергії зв'язку і ступеня зв'язності скловидного каркасу, але і ступенем заповнення простору в досліджуваних стеклах та перенапруженістю зв'язків, особливо в системі Cd-As. Структура середнього порядку (на декількох міжатомних віддалей) у стеклах Ge-As-S змінюється від ланцюжкової до шаруватої і далі до просторово зв'язаної. Останній перехід спостерігається при $Z_c = 2,67$ і супроводжується різкою зміною фізичних властивостей, в тому числі і стрибкоподібним ростом пружних постійних у

стеклах системи Cd-As.

Стекла, в яких $Z_{cp} \leq Z_c$, характеризуються слабкою залежністю пружності від складу (табл. 1). У некристалічних матеріалів з $Z_{cp} \geq Z_c$ пружність різко виростає, вони стають нечутливими до зовнішніх впливів, про що свідчить залежність оптичного коефіцієнта напруження ВІ (ОКН) від Z_{cp} (ОКН є похідною показника заломлення від механічних напружень). У стеклах Cd-As величина ОКН зростає із збільшенням вмісту кадмію від -7 до -10 ТПа, що є менше, ніж у стеклах Ge-As-S і на багато менше, ніж в низькокоординованих халькогенідних стеклах [17].

Величина γ (табл. 1) мало залежить від складу стекол. З ростом ступеня зв'язності скловидного каркасу скла (при заміщенні миш'яку на германій в системі As₂S₃-GeS₂) і при збільшенні вмісту кадмію в сітці скла в системі Cd-As γ та μ зменшується, а пружність зростає. Величина A в формулі (4) близька до одиниці (табл. 2), як і для інших стекол.

Якщо для стекол Cd-As f_g і γ змінюються симбатно із зміною складу, то для халькогенідних стекол спостерігається інша картина. Величина f_g росте із збіль-шенням вмісту германію в склі (жорсткості), а γ спадає (табл. 1, 2). Це, очевидно, можна пояснити своєрідністю будови каркасу сітки скла: в халькогенідних стеклах сітка скла утворюється переважно ковалентними зв'язками і не спотворюється модифікуючим додатком катіонів, як це має місце в силікатних стеклах [18] і стеклах системи Cd-As [15,16].

Відхилення частки флуктуаційного об'єму fg $(f_g = V_h n_h)$, який заморожується при T_g , від постійного значення може бути зумовлене зміною або величини об'єму мікропорожнини V_h, або концентрації дірок n_h [8]. Аналіз отриманих результатів показує, що ріст fg супроводжується зменшенням коефіцієнта Пуассона µ, граткового параметра Грюнайзена ү, об'єму мікропорожнини V_h і збільшенням n_h (табл. 1, 2). Слід зазначити, що заміна миш'яку на германій у стеклах халькогенідної системи призводить до зміни V_h і n_h у кілька разів, тоді як у стеклах системи Cd-As V_h і n_h практично не залежить від складу. Ці результати узгоджуються з результатами дослідження системи Ge-As-S в роботі [13], де показано, що в стеклах цієї системи структура некристалічних матеріалів із значенням середньої координації $Z_{cp} \leq Z_c$ характеризуються наявністю значної кількості областей із зниженою жорсткістю (великою густиною структурних дефектів), а при $Z_{cp} \ge Z_c$ матеріали побудовані в основному із "жорстких областей", та з одним із висновків моделі "м'яких" конфігурацій [19] про незначну роль м'яких конфігурацій у некристалічних матеріалах з $Z_{cp} = 4$.

Саме у цих, так званих, м'яких конфігураціях відбуваються локальні деформації квазігратки, що, згідно [4], пов'язані з утворенням флуктуаційних мікропорожнин і саме в таких "м'яких" мікрообластях ангармонізм коливань повинен бути виражений сильніше, ніж в нормальній сітці або ланцюжку сильних зв'язків. Що і спостерігається у стеклах досліджуваних систем: у стеклах з малим Z_{cp} (системи As-S (Se) [12]) γ значно більше, ніж у стеклах системи Cd-As, де $Z_{cp} = 4$ (табл. 1). Склування ковалентних сполук з високим

Склування ковалентних сполук з високим координаційним числом дозволяє отримати так звані "перенапружені" напівпровідникові стекла, які за своїми властивостями займають проміжне положення між напівпровідниковими халькогенідними та металевими стеклами. В них замість природно-варіаційного ближнього порядку, що має місце в халькогенідах, формується примусово-варіаційний ближній порядок з сильною деформацією структурних одиниць різного типу, в залежності від складу, та перенапруги хімічного зв'язку [15,16].

IV. Висновки

Отже, максимальний внутрішній тиск p_{im} досліджуваних стекол тільки у першому наближенні збігається з їх мікротвердістю Н. Межа пластичності σ_n досліджуваних стекол менша за мікротвердість Н і за максимальний внутрішній тиск p_{im} .

Прослідковується певний зв'язок пружних сталих та параметрів теоріі флуктуаційного вільного об'єму з величиною середнього координаційного числа Z_{ср} та характером хімічного зв'язку в склі. Отримані результати узгоджуються з даними досліджень для інших стекол.

- [1] А.И. Бурштейн. Молекулярная физика. Наука, Новосибирск. 253 с. (1986).
- [2] Д.С. Сандитов, Г.М. Бартенев. *Физические свойства неупорядоченных структур*, Наука, Новосибирск. 321 с. (1982).
- [3] Д.С. Сандитов, Г.В. Козлов. Ангармонизм межатомных и межмолекулярных связей и физико механические свойства полимерных стекол. // Физ. и хим. стекла, 21(6), сс. 549-578 (1995).
- [4] Д.С. Сандитов, С.Ш. Сангадиев. О внутреннем давлении и микротвердости неорганических стекол. // Физ. и хим. стекла, 24(6), сс. 741-751 (1998).
- [5] Д.С. Сандитов. О микротвердости и температуре стеклования неорганических стекол. // Физ. и хим. стекла, **3**(1), сс. 14-19 (1977).
- [6] С.В. Немилов. Взаимосвязь между скоростью распространения звука, массой и энергией химического взаимодействия. // ДАН СРСР, **181**(6), сс. 1427-1429 (1968).

- [7] В.Б. Лазарев, А.С. Баланкин, А.Д. Изотов, А.А. Кожушко. Структурная устойчивость и динамическая прочность неорганических материалов. Наука, Москва 325 с. (1975).
- [8] Д.С. Сандитов, С.Ш. Сангадиев. Новый подход к интерпретации флуктуационого свободного объема аморфных полимеров и стекол. // Высокомолекулярные соединения. Серия А, 22(6), сс. 683-693 (1996).
- Д.С. Сандитов. Ангармонизм колебаний квазирешетки и модель флуктуационных дырок. // Физ. и хим. стекла, 17(4), сс. 535-543 (1991)
- [10] О.В. Петрушова, Т.Н. Мельниченко. Акустооптические и упругие свойства стекол в системе кадмий мышьяк. // Неорган. материалы, 33(3), сс. 280-279 (1997).
- [11] Т.Н. Мельниченко, И.М. Юркин, В.И. Феделеш, Т.Д. Мельниченко. Ангармонизм колебаний и параметр Грюнайзена халькогенидных стекол Ge-As-S в рамках концепции свободного объема. // Физ. и хим. стекла, **26** (5), сс. 569-577 (2000).
- [12] Т.Н. Мельниченко. Применение концепции свободного объема к стеклообразным халькогенидам мышьяка и оксогалогенидам сурьмы. // Неорган. Материалы, 34(6), сс. 734-737 (1998).
- [13] И.М. Юркин. Упругие и фотоупругие свойства некристаллических материалов в системах Ge_xAs(Sb)_y S_{1-x-y}. Автореф. канд. дис. Ужгород. 16 с. (1990)
- [14] Д.С. Сандитов, Г.В. Козлов, Б.Д. Сандитов. Дырочно-кластерная модель пластической дефор-мации стеклообразных твердых тел. // Физ. и хим. стекла, 22(6), сс. 683-693 (1996).
- [15] Д.И. Циуляну, Н.А. Гуменюк. Структурно-химические особенности и оптические свойства стекол, обогащенных серой, в системе As S Ge. // *Неорган материалы*, **29**(5), сс. 689-692 (1993).
- [16] О.В. Петрушова. Склоутворення в системі кадмій миш'як. Автореф. канд. дис. Ужгород. 26 с. (1994)
- [17] В.И. Феделеш, Ю.Ю. Рубиш, Т.Н. Мельниченко, И.М. Юркин. Оптический коэффициент напряжения стекол Ge-As-S.// В кн.: 111 Всесоюзная конференция "Неорганические стекловидные материалы и пленки на их основе в микроэлектронике". Москва. (1983).
- [18] С.В. Немилов. Исследование вязкости стекол системы селен мышьяк. // Журн. Прикл.химии, **36**(4), сс. 977-981 (1963).
- [19] М.И. Клингер. Аномальные динамические низкотемпературные и электронные свойства стекол. // Физ. и хим. стекла, 15(3), сс. 372-396 (1989).

T.M. Melnichenko, V.I. Fedelesh, I.M. Jurkin, T.D. Melnichenko, V.M. Rizak

Internal Pressure, Microhardness and Fluidity Limit in the Chalcogenide Glasses

Uzhgorod national university 54,Voloshin str., Uzhgorod, 88015 Ukraine E-mail: ipk@univ.Uzhgorod.ua

Through the data of elastic constants maximal internal pressure p_{im} is calculated for chalcogenide glasses and fluidity limit σ_{π} . It was shown, that value of p_{im} not corelates with microhardness H after Vikkers in all of glasses. Fluidity (plastic) limit σ_{π} more little then microhardness and maximal internal pressure p_{im} .

Elastic constants and fluctuation free volume parameters in observed glasses largely depend on mean coordination number Z_{cp} .