УДК 539.234+546.87

## І.М. Черненко, К.В. Часовський, В.Ф. Катков Стабілізація б-фази плівок Ві<sub>2</sub>О<sub>3</sub> при 300 К

Дніпропетровський національний університет, вул. Наукова, 6/13, м. Дніпропетровськ, 49050

Плівки α, β, δ і аморфної модифікацій одержували при фіксованих значеннях парціального тиску кисню, струмі магнетрона і температурі підкладки. Товщину плівок визначали інтерференційним методом. Структура і переважна орієнтація отриманих плівок визначена рентгенофазовим аналізом на установці ДРОН-2.0 у СоК<sub>α</sub> випромінюванні.

Ключові слова: модифікація, мішень, магнетрон, іонно-плазмовий, розпилення, текстура.

Стаття поступила до редакції 13.06.2002; прийнята до друку 21.09.2002

Поліморфізм оксиду вісмуту сполуки Ві2О3 неодноразово був раніше вивчений як за допомогою методів високотемпературного структурного аналізу, так і при вимірі його температурної залежності провідності [1]. В даний час відомі а, β, γ і δ модифікації оксиду вісмуту Ві2O3 [2,3]. Моноклінна α-модифікація стабільна й існує аж до температури 1002 К. При цій температурі відбувається фазовий перехід у кубічну гранецентровану б-модифікацію, що існує аж до температури плавлення 1097 К. Метастабільні модифікації утворюються при охолодженні з розплаву. Тетрагональна β-модифікація утворюється при охолодженні при 923 К. Кубічну ү-модифікацію отримують при охолодженні нижче 912 К. Звичайно при довільній температурі в області 923-663 К відбувається фазовий перехід метастабільних модифікацій у стабільну α-фазу.

Ві<sub>2</sub>О<sub>3</sub>. Пов'язано це, у першу чергу, з її участю в утворенні матеріалів з високотемпературною надпровідністю [5], її складними магнітними властивостями [б], рекордною суперіонною провідністю [7], а також її важливою роллю в утворенні варисторних керамік з високим коефіцієнтом нелінійності вольт-амперної характеристики [8].

З погляду мікрофізики плівки оксиду вісмуту можуть становити особливий інтерес, оскільки оптичні й електричні властивості можуть відрізнятися для мікро- і макроструктур.

Одержання плівок оксиду вісмуту найбільш простим методом термічного напилювання досить складно здійснити через те, що розплавлений оксид вісмуту атакується практично будь-яким матеріалом тигля. Термічне окислювання плівок чистого вісмуту приводить до появи плівок із сумішшю різних

Таблиця 1

| Структура                                | Струм       | Температура<br>підкладки, К | Парціальний | Швидкість    | TC .       |
|------------------------------------------|-------------|-----------------------------|-------------|--------------|------------|
|                                          | магнетрона, |                             | тиск        | напилювання, | Колір      |
|                                          | мА          |                             | кисню, Па   | A/c          |            |
| аморфна                                  | 40-90       | 300                         | 0.27-1.2    | 5-15         | жовтий     |
| $\delta$ -Bi <sub>2</sub> O <sub>3</sub> | 40          | 300                         | 1.2         | 15           | коричневий |
| $\beta$ -Bi <sub>2</sub> O <sub>3</sub>  | 80          | 450                         | 0.27        | 5            | жовтий     |
| $\alpha$ -Bi <sub>2</sub> O <sub>3</sub> | 80          | 450                         | 0.8         | 20           | жовтий     |

Параметри напилювання аморфної, α, β, і δ модифікацій оксиду вісмуту

У роботі [4] спостерігали електронну провідність р-типу в  $\alpha$ -Ві<sub>2</sub>О<sub>3</sub>. При утворенні високотемпературної  $\delta$ -модифікації виявляється збільшення провідності на три порядки, що зв'язано з її високою іонною провідністю.  $\beta$  і  $\gamma$ -модифікації також іоннопровідні, однак їхня провідність на кілька порядків нижче високотемпературної  $\delta$ -модифікації.

Зараз знову повертається інтерес до сполуки

фазових сполук. Найбільш прийнятними для одержання плівок оксиду вісмуту виявилися методи реактивного іонно-плазмового розпилення [9,10], активованого реактивного розпилення [11]. Ці методи дозволяють одержувати плівки Ві<sub>2</sub>O<sub>3</sub> різних фазових сполук.

У таблиці 1 приведені параметри напилювання аморфної,  $\alpha$ ,  $\beta$ , і  $\delta$  модифікацій оксиду вісмуту.

Видно, що аморфний Bi<sub>2</sub>O<sub>3</sub> одержували при будьяких струмах магнетрона, у всьому діапазоні парціальних тисків кисню при осадженні на були матові і мали жовтий відтінок. Плівки δ-Ві<sub>2</sub>O<sub>3</sub> завжди одержували при швидкостях осадження в 15 Å/с і парціальному тиску кисню 0,8 Па. Ці плівки



Рис. 1. Дифрактограма плівок β-Ві<sub>2</sub>О<sub>3</sub>.

підкладку, що не нагрівається. Ці плівки були жовтого відтінку. При максимальній швидкості осадження в 20 Å/с, температурі підкладки 450 К й

мали коричневий відтінок.

Для всіх отриманих плівок точно збіглися значення кутів, при яких спостерігали максимуми



**Рис. 2.** Дифрактограма плівок α-Ві<sub>2</sub>О<sub>3</sub>.

парціальному тиску кисню 0,8 Па стабільно одержували безбарвні плівки  $\alpha$ - модифікації оксиду вісмуту. Плівки  $\beta$ -Ві<sub>2</sub>O<sub>3</sub> одержували при тій же температурі підкладки 450 К, але інших швидкостях осадження 5 Å/с і парціальному тиску кисню 0,27 Па,

інтенсивності розсіювання рентгенівського випромінювання й обчислені для них міжплощинні відстані. Це свідчить про те, що отримані плівки мають структуру α, β, і δ-Ві<sub>2</sub>O<sub>3</sub>. Відсутність деяких максимумів говорить про існування текстури в отриманих плівках.

На рис. 1 зображена дифрактограма для плівок  $\beta$ -Bi<sub>2</sub>O<sub>3</sub> на якій зображена залежність інтенсивності розсіювання від меж площинної відстані. При порівнянні інтенсивності розсіювання від отриманих плівок з еталонними значеннями таблиць ASTM можна помітити, що плівки  $\beta$ -Bi<sub>2</sub>O<sub>3</sub> полікристалічні і мають переважну орієнтацію в площині [201].

З дифрактограми зображеної на рис. 2 можна визначити, що отримані плівки α-Ві<sub>2</sub>O<sub>3</sub> полі-

переважну орієнтацію в площині [111].

Плівки аморфного,  $\alpha$  і  $\beta$  оксиду вісмуту були раніше отримані методами реактивного розпилення й активованого реактивного розпилення [9-12]. А плівки  $\delta$ -Bi<sub>2</sub>O<sub>3</sub> одержували тільки після випалу плівок, отриманих при напилюванні на охолоджуваний азотом підкладкотримач [13]. Нами ці плівки були отримані безпосередньо при напилюванні. Очевидно, отримана безпосередньо метастабільна  $\delta$ - модифікація оксиду вісмуту буде мати нові



Рис. 3. Дифрактограма плівок δ-Ві<sub>2</sub>О<sub>3</sub>.

кристалічні і мають переважну орієнтацію фат у площині [221].

Аналогічно для плівок δ-Ві<sub>2</sub>О<sub>3</sub> рис. 3 можна побачити, що ці плівки також полікристалічні і мають електричні й оптичні властивості, що може становити особливий інтерес, оскільки високотемпературний δ-Bi<sub>2</sub>O<sub>3</sub> має високу іонну провідність.

- H.A. Harwig, A.G. Gerards. Electrical properties of the α, β, γ and δ phases of bismuth sesquioxide //*Journal of state chemistry*, 26, pp. 265 (1978).
- [2] H.A. Harwig. On the structure of bismuth sesquioxide:  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$  phase //*Z* Anorg. Allg. Chem., **444**(2), pp. 151 (1978).
- [3] H.A. Harwig. Phase relations in bismuthsesquioxide //Z Anorg. Allg. Chem., 444(2), pp. 166. (1978).
- [4] R. Mansfueld. The electrical properties of bismuth oxide // Proceedings Physical Society, 62(8), pp. 476 (1949).
- [5] Ю.А. Александров, Н.Н. Селивестров, В.В. Дроботенко, М.В. Жуков, В.М. Шекунова, А.И. Лигоньская. Получение ВТСП-плёнок спрей-пиролизом //Применение металлорганических соединений для получения неорганических покрытии и материалов. Тез. докл. 6 Всес. Совещ. Нижний Новгород, 16-18 сент., сс. 170-171 (1991).
- [6] В.Г. Орлов, А.А. Буш, С.А. Иванов, В.В. Журов. Аномалии физических свойств α-формы оксида висмута. //Физика твёрдого тела, 39(5), с. 865 (1997).
- [7] M.J. Verkerk, M.W. Hammink, A.J. Burggraaf. Oxygen transfer on substituted ZrO<sub>2</sub>, Bi<sub>2</sub>O<sub>3</sub>, and CeO<sub>2</sub> electrolytes with platinum electrodes //*Jotmial of the electrochemical society*, **130**(1), pp. 70 (1987).
- [8] Bda Kazuo, Eguchi Haruyuki, Okinaka Hideyuki, Matsuoka Michio. Thin-film bulk-type ZnO varistor fabricated by RF spattering // Jpn. J. Appl. Phys, 22(1), pp. 202 (1983).
- [9] J. George, B. Prodeep. X-ray diffection studies of BiiOs films prepared by reactive and activated reactive evaporation //*Thin Solid Films*, 148, pp. 255 (1987).

- [10] J. George B. Pradeep and K.S. Joseph. Method for the preparation of dielectric films by activated reactive evaporation using resistively heated sourses *//Rev. Sci. Instr.*, **57**(9), p. 2355-2356 (1986).
- [11] M.I. Lieberman and R. C Medrud. Reactively spattered oxide films //Elecfrochem. Soc., 116, p. 242-247 (1969).
- [12] P.B. Chapham. Preparation and properties of spattered bismuth oxide films //Br. Appl. Phys., 18, pp. 363-368 (1967).
- [13] J. George, B. Pradeep, K.S. Joseph. Oxidation of bismuth films in air and superheated steam //*Thin Solid Films*, 144, pp. 255-258 (1986).

## I.M. Chernenko, K.V. Chasovskyi, V.F. Katkov

## Stabilisation $\delta$ -Phase by Films Bi<sub>2</sub>O<sub>3</sub> in 300 K

Dnipropetrovs'k National University, Str. Naukova, 13, Dnipropetrovs'k, 49050, Ukraine

A film  $\alpha$ ,  $\beta$ ,  $\delta$  and amorphous modifications were gained at fixed values of fractional pressure of oxygen, current of a magnetron and temperature of a substrate. A thickness of films were determened by interference method. Structure and preferred orienteation of obtained films determined by the X-rays analysis in Co K<sub>a</sub> radiation on instalation DRON-2.0.