УДК 539.216.539.26:546.162

Н.М. Білявіна², В.Ф. Зінченко¹, Н.П. Єфрюшина¹, Н.А. Чивірьова¹, В.Я. Марків², В.П. Антонович¹, О.В. Мозкова³, О.В. Стамікосто¹

Умови утворення та кристалічна структура сульфофторидів Ln₃S₂F₄ (Ln = Y, Nd, Sm, Gd, Dy, Tm) в продуктах синтезу ПУМ LnSF

¹Фізико-хімічний інститут ім. О.В. Богатського НАН України,

Люстдорфська дорога, 86, м. Одеса, 65080, тел. 0482-61-82-25, E-mail: <u>physchem@paco.net</u> ²Київський національний університет ім. Тараса Шевченка, вул. Володимирська, 60, м. Київ, 01003, тел. 044-266-23-35, E-mail: <u>belmar@mail.kiev.ua</u> ³Центральне конструкторське бюро "Арсенал" вул. Московська, 8, м. Київ, 01010, тел. 044-254-59-08, E-mail: <u>borisgor@i.com.ua</u>

В процесі твердофазного синтезу сульфофторидів РЗМ в деяких продуктах методом РФА виявлено утворення додаткових фаз, вміст яких змінюється від слідових домішок (у випадку сполук Y, Nd, Gd) до переважаючої фази (Tm). При синтезі у сольовому розтопі NaCl-KCl вміст таких фаз суттєво зростає. Встановлено належність зазначених фаз за кристалічною структурою до типу $Yb_3S_2F_4$ змішановалентної сполуки Yb(II, III). Розраховано дифракційний спектр та змодельовано структуру $Tm_3S_2F_4$. Виявлено кореляцію між здатністю до утворення подібних фаз та схильністю до різновалентних станів у рідкоземельному металу. Хімічний аналіз підтвердив суттєве відхилення складу синтезованих у сольових розтопах продуктів від стехіометрії. Процес вакуумного випаровування, за даними РФА і хімічного аналізу залишків та покриттів, носить інконгруентний характер. Покриття складаються переважно зі фторидів типу LnF₃ та значної частки аморфної фази, що сприяє поліпшенню їх оптичних властивостей.

Ключові слова: умови синтезу, сульфофториди РЗМ, змішановалентні сполуки, структура, покриття.

Стаття поступила до редакції 08.08.2002 р., прийнято до друку 15.12.2002 р.

I. Вступ

Відомо, що взаємодія РЗМ з сіркою та фтором веде до утворення сполук еквіатомного складу А-LnSF (Ln=Y, La-Lu), кристалічна структура яких відноситься до структурного типу PbFCl [1,2] (сполуки TmFS, YbFS, LuSF синтезовано під високих тисках [2]). При відпрацюванні режимів синтезу зазначених сульфофторидів (для подальшого дослідження їх оптичних властивостей [3]) в деяких вихідних продуктах нами було зафіксовано утворення додаткових фаз, дифракційні спектри яких подібні між собою, а за характером розташування та інтенсивностями основних відбиттів близькі до дифракційних спектрів основних фазових складових (сполук A-LnSF). В даній роботі наведено результати дослідження складу, кристалічної структури та умов синтезу цих сполук-"супутників" (умовно позначених як В-фази).

II. Методика експерименту

Сульфофториди отримували або у сольовому розтопі (зокрема, евтектиці NaCl-KCl), або методом прямого твердофазного синтезу за реакцією:

$Ln_2S_3+LnF_3\rightarrow 3LnSF.$

Хімічний склад продуктів синтезу визначали за методикою [4]. Дифрактограми для фазового аналізу та дослідження кристалічної структури записували на автоматизованому дифрактометрі ДРОН-3 (мідне або кобальтове фільтроване випромінювання) в дискретному режимі: крок сканування 0,050, час експозиції в кожній точці (5-7) с. Положення центрів ваги та інтегральні інтенсивності відбиттів піків визначали за методом повнопрофільного аналізу. Фазовий склад сплавів та кристалічну структуру фаз визначали за допомогою оригінальних програм з підключеними до них банком рентгенівських дифракційних данних та банком структурних типів інтерметалічних і неорганічних сполук. Періоди кристалічних граток уточнювали методом найменших квадратів.

III. Результати експерименту та їх обговорення

За даними рентгенівського фазового аналізу Вфази є основними фазовими складовими (без врахування відбиттів NaCl та KCl) в невідмитих продуктах синтезу сульфофторидів ітрію, неодиму та гадолінію у сольовому розтопі (масове співвідношення реагентів та сольової суміші 1:2). Натомість, продукт синтезу сульфофториду лантану містить Афазу зі структурою типу PbFCl.

Дані хімічного аналізу декількох невідмитих проб продуктів синтезу сульфофториду неодиму свідчать, що склад В-фази може бути описаний формулою ≈Nd₃S₂F_{3.6} (табл. 1). Відмивання сольової суміші спричиняє майже повне руйнування цієї фази з утворенням еквіатомної сполуки NdSF.

Аналіз літературних даних з синтезу та дослідження відомих сульфофторидів РЗМ показує, що близький до $\approx Nd_3S_2F_{3.6}$ склад має синтезована нещодавно сполука Yb₃S₂F₄ [5], кристалічна структура якої складається з двох шарів фрагментів структури типу PbFCl та одного шару фрагментів структури типу CaF₂. З врахуванням даних [6] проіндексовано дифракційні спектри і визначено періоди кристалічних граток отриманих нами В-фаз в невідмитих продуктах синтезу в сольовому розтопі (табл. 2).

Найбільшу кількість досліджуваної В-фази серед продуктів твердофазного синтезу містять вихідні продукти з тулієм. В них ця фаза є основною (табл. 2). Оскільки дифракційна картина сольової суміші (NaCl + KCl) в невідмитих продуктах синтезу суттєво маскує дифракційні спектри В-фаз, то належність їх кристалічної структури типу Yb₃S₂F₄ перевірена за дифракційним спектром саме цієї проби. В значно меншій кількості В-фази присутні в продуктах твердофазного синтезу сульфофторидів ітрію, неодиму, самарію, гадолінію, диспрозію. Спроби отримати твердофазним синтезом сульфофториди європію (EuSF або $Eu_3S_2F_4$) були марні: продукти синтезу містили лише EuF_2 та EuS.

Виконані розрахунки підтвердили належність структури В-фази з тулієм до структурного типу $Yb_3S_2F_4$ і дали змогу уточнити її склад ($Tm_3S_2F_4$) та координатні параметри структури (табл. 3). Розрахунок дифракційного спектру фази В- $Tm_3S_2F_4$ наведено в табл. 4. Фрагмент дифракційного спектру фази В- $Tm_3S_2F_4$ в складі продукту синтезу сульфофториду тулію зображено на рис. 1, а проекцію її кристалічної структури на площину XZ – на рис. 2.

Про різний характер взаємодії між Ln_2S_3 та LnF_3 у сольовому розтопі і при твердофазному спіканні свідчать як неоднаковий фазовий склад продуктів синтезу, так і в деяких випадках суттєва різниця в значеннях періодів граток однотипних фаз (табл. 2). Так, в продукті твердофазного синтезу сполука $Tm_3S_2F_4$ співіснує разом з сульфофторидом β-TmSF, то при синтезі у сольовому розтопі натомість існує лише сполука NaTmS₂, яка утворюється за реакцією подвійного іонного обміну з компонентами сольового розтопу.

 $2LnSCl+NaCl \longrightarrow NaLnS_2+LnCl_3.$

В цілому, утворення сполук B-Ln₃S₂F₄, на наш погляд, відбувається за рахунок проходження окиснювально-відновного процесу між відповідним сульфідом та фторидом Ln (Ln = Nd, Sm, Gd, Tm, Yb):

$$2Ln_2S_3 + LnF_3 \xrightarrow{t} 4LnS + LnSF + SF_2 \uparrow$$

Таблиця 1

Результати хімічного аналізу продуктів синтезу NdSF у сольовому розтопі (евтектика NaCl-KCl) при 700⁰C.

Склад шихти	Вміст компонентів, % від теоретичного значення			Співвідношення компонентів	
	Nd	S	F	(Nd:S:F)	
$Nd_2S_3 + NdF_3 (T\Phi C)$	97,35	99,47	_	0,979:1	
Nd ₂ S ₃ + NdF ₃ + евтектика (2:1) [*]	45,72	45,92	_	0,996:1	
$Nd_2S_3 + NdF_3 + $ евтектика (1:1)*	32,29	28,96	_	1,115:1	
Nd ₂ S ₃ + NdF ₃ + евтектика (1:2) [*]	61,72	33,74	_	1,829:1	
Nd ₂ S ₃ + NdF ₃ + евтектика (1:1) [•]	95,26	69,12	107,4	1,378:1:1,554	
Nd ₂ S ₃ + NdF ₃ + евтектика (1:2)*	96,61	59,01	108,7	1,637:1:1,842	

У дужках позначено масове співвідношення між сумішшю реагентів та евтектикою.

Н.М. Білявіна, В.Ф. Зінченко, Н.П. Єфрюшина та ін.

Таблиця 3

Атом	Позиція	x y		Z		
Tm1	2a	0	0			
Tm2	4e	0 0		0,3432(6)		
F	8g	0	0,5	0,425(9)		
S	4e	0	0	0,193(5)		
Просторова група		<i>I4/mmm</i> (no, 139)				
Періоди гратки, Å		a = 3,792(3), c = 18,794(2)				
Розрахована густина, g/cm ³		7,95				
Незалежні відбиття	залежні відбиття		42			
Ізотропна температурна поправка, Å ²		B = 2,23(3)				
Текстурна поправка		τ= 0,69(3), вісь текстури [001]				
Фактор розбіжності		$R_W = 0,077$				

Кристалографічні дані сполуки В-Тт₃S₂F₄

і далі за схемою:

$$LnS + LnF_3 \rightarrow LnF_2 + LnSF$$

 $LnF_2 + 2LnSF \rightarrow LnF_2 \cdot 2LnSF$ (ado $Ln_3S_2F_4$).

Здатність до таких реакцій, очевидно, є тим більшою, чим більшою є схильність лантаніду при утворенні сполук реалізуватися з валентністю нижчою ніж 3. Таку здатність, як відомо, можна описати якісним співвідношенням: Eu > Yb > Sm > Tm > Sc, Y, La, Gd, Nd, Dy, Ho, Lu [6,7]. Європій, таким чином, не утворює фази Eu₃S₂F₄ через занадто велику схильність до валентного стану (II) і нестабільність Eu(III) у відновному сульфідному середовищі [8].

Сольова фаза, пом'якшуючи умови синтезу, сприяє утворенню фаз $B-Ln_3S_2F_4$ тих лантанідів, для яких це неможливо в більш жорстких умовах твердофазного синтезу. Певну роль у цьому процесі відіграє утворення нестійких проміжних хлоридних або сульфофторидних сполук типу $LnCl_2$ та LnSCl. Сполуки двохвалентних лантанідів мають бути досить стійкими лише у кристалічному стані, а у водному середовищі цілковито руйнуються за схемою:

 $2 \operatorname{Ln}_3 S_2 F_4 + H_2 O \rightarrow 4 \operatorname{Ln} SF + H_2 \uparrow + \operatorname{Ln} OF + \operatorname{Ln} F_3.$

Цим, можливо, і пояснюється наявність помітної кількості оксифторидних фаз у продуктах синтезу сульфофторидів, що були відмиті від сольової фази.

Рис. 1. Фрагмент дифракційного спектру фази В-Тт₃S₂F₄ в складі продукту синтезу сульфофториду тулію.

Таблиця 4

Ι		d, Å		h 1-1	
Розр.	Експ.	Розр.	Експ.		
3,244	3,245	999	1000	0 1 3	
3,132	3,136	302	325	0 0 6	
2,681	2,680	339	420	1 1 0	
2,670	,	83		0 1 5	
2,578	2,577	10	8	1 1 2	
2,349	-	0	1	0 0 8	
2,329	2,330	4	8	1 1 4	
2,191	2,191	37	35	0 1 7	
2,037	2,037	424	389	1 1 6	
1,8960	1,8957	176	179	0 2 0	
1,8794	-	3	1	0 0 10	
1,8585	-	1	1	0 2 2	
1,8292	1,8290	190	172	0 1 9	
1,7670	1,7669	21	11	1 1 8	
1,7582	-	3	1	024	
1,6889	-	0	1	1 2 1	
1,6369	1,6367	197	205	1 2 3	
1,6220	1,6216	105	124	0 2 6	
1,5662	1,5670	25	26	0 0 12	
1,5577	1,5579	36	29	0 1 1 1	
1,5458	1,5460	20	16	1 2 5	
1,5390	1,5389	2	6	1 1 10	
1,4754	-	1	1	0 2 8	
1,4338	1,4340	12	16	1 2 7	
1,3524	1,3518	36	58	1 1 12	
1,3508	1,3506	14		0 1 13	
1,3424	1,3410	8	68	0 0 14	
1,3407		42		2 2 0	
1,3348	1,3346	3	5	0 2 10	
1,3272	-	0	1	2 2 2	
1,3164	1,3165	91	105	1 2 9	
1,2892	-	1	1	224	
1,2611	-	0	1	0 3 1	
1,2390	1,2390	33	47	0 3 3	
1,2325	1,2324	36	48	2 2 6	
1,2075	1,2073	32	55	0 2 12	
1,2036	1,2032	24		1 2 11	
1,2004	1,1992	8	54	1 1 14	
1,1991		39		1 3 0	
1,1981		4	44	0 3 5	
1,1897	1,1897	33		0 1 15	
1,1895		1		1 3 2	

Розрахунок дифрактограми сполуки $B\text{-}Tm_3S_2F_4$

Рис. 2. Проекція кристалічної структури сполуки В-Tm₃S₂F₄ на площину *XZ*.

IV. Термічне випаровування сульфофторидів

Синтезовані матеріали (табл. 5) було апробовано як плівкоутворюючі. В процесі нанесення з них термічним випаровуванням покриттів сульфофториди (А- та В-фази) розкладаються та оксидуються з утворенням простих сульфідів, оксифторидів, оксисульфідів. Інконгруентність характеру випаровування сульфофторидів підтверджують також дані рентгенівського дослідження фазового складу покриттів. Так, якщо синтезовані ПУМ містять переважно очікувані сульфофториди LnSF (за винятком матеріалу з тулієм) зі структурою типу PbFCl, то нанесені з них покриття – виключно прості фториди LnF₃.

Крім цього, нанесені покриття містять суттєву частку аморфної фазової складової (рис.3), а покриття, які нанесені з TmSF, рентгеноаморфні.

Підтвердженням інконгруентного характеру випаровування сульфофторидів РЗМ з вилітанням більш леткої компоненти – фториду РЗМ можуть також слугувати результати хімічного аналізу залишків (табл. 6). Матеріал залишків суттєво збіднений (порівняно з сульфофторидом) на вміст фтору. Розрахований формальний валентний стан Y і лантанідів є помітно меншим за 3.

Результати вивчення оптичних та експлуатаційних характеристик покриттів, виготовлених з деяких сульфофторидів Ln наведено в табл. 5. Для порівняння в табл. 5 включено також отримані нами раніше [9] результати дослідження покриттів, які нанесено при таких же технологічних режимах з простих фторидів LnF₃. Аналіз отриманих даних свідчить покращення оптичних характеристик покриттів, якщо в якості ПУМ використано сульфофториди, а не фториди РЗМ, проте експлуатаційні характеристики дещо погіршуются. Це може бути пояснено саме наявністю значної кількості аморфної складової у покриттях, хоча це явище може бути спричинене і іншими факторами. Отже, сульфофториди РЗМ можуть розглядатися як перспективні матеріали для отримання інтерференційних покриттів для оптики.

Таблиця 5

	Виготовлене покриття				
Матеріал	Фазовий склад	Показник заломлення n ¹⁾	Розсіювання, %	Механічна міцність ²⁾	
YF ₃	YF ₃	1,51–1,54	0,48-0,52	≅2500	
NdF ₃	NdF ₃	1,44-1,49	0,20-0,25	≅3000	
YSF	YF ₃	1,56	0,22-0,28	≅1000	
NdSF	NdF ₃	1,6	0,09–0,10	≅2000	
TmSF	аморфне	1,53	не визначено	не визначено	

Фазовий склад плівкових покриттів зі створених ПУМ. Оптико-експлуатаційні властивості цих покриттів

 Показник заломлення плівок розрахований за результатами спектральних вимірювань у діапазоні 0,5-2,0 мкм.

 Згідно ОСТЗ-1901-85 механічну міцність оцінювали за кількістю обертів на тертя, котрі витримує покриття при випробовуванні на приладі СМ-55.

Рис. 3. Фрагмент дифракційного спектра покриття з ПУМ SmSF.

Таблиця 6

Сульфо-	Вихідний ПУМ			Залишок після випаровування		
фторид	Ln	S	F	Ln	S	F
YSF	63,10±	21,90±	13,37±	64,15±	25,93±	3,48±
	0,51	0,15	0,12	0,68	0,18	0,14
NdSF	73,71±	16,43±	0.72*	74,31±	14,82±	1,01±
	0,16	0,07	9,73*	0,08	0,28	0,11
SmSF 74,6	74.66*	15,91*	9,43*	75,78±	12,10±	4,53±
	/4,00*			0,37	0,37	0,39
TmSF	76,68±	12,48±	861*	78,08±	12,02±	2,78±
	0,19	0,39	0,04*	0,11	0,29	0,18

Результат хімічного аналізу сульфофторидів РЗМ (вміст компонентів, мас. %)

* – розрахункові дані.

Роботу виконано при підтримці Науково-Технологічного Центру в Україні (проект №1356).

Білявіна Н.М. – к.ф.-м.н., старший науковий співробітник кафедри фізики металів;

Зінченко В.Ф. – д.х.н., доцент, провідний науковий співробітник;

Єфрюшина Н.П. – д.х.н., професор, завідувач відділу фізико-хімії люмінесцентних матеріалів; **Чивірьова Н.А.** – старший науковий співробітник; Марків В.Я. – к.х.н., доцент;

Антонович В.П. – д.х.н., профессор, завідувач відділу фізико-хімії координаційних сполук і аналітичної хімії;

Мозкова О.В. – провідний конструктор лабораторії оптичних вакуумних покриттів;

Стамікосто О.В. – інженер відділу фізико-хімії люмінесцентних матеріалів.

- [1] П.Г. Рустамов, О.М. Алиев, А.В. Эйнулаев, И.П. Алиев. Хальколантанаты редких элементов (химия редких элементов) Наука. М., 284 с (1989).
- [2] Th. Schleid, H. Grossholz. Über Fluoridsulfide (MFS) der Lanthanide (M = La-Nd, Sm, Gd-Lu) im A-Typ mit PbFCl-Struktur // Z. Anorg. Allgem. Chem., 627, S.26932699 (2001).
- [3] В.Ф. Зінченко, Н.П. Єфрюшина, В.П. Антонович, О.Г. Єрьомін, О.В. Стамікосто, І.П. Ковалевська. Синтез і оптичні властивості сульфофторидів РЗМ // Укр.хім.журнал, 65(3), с.16.18 (2000).
- [4] N.A. Chiviryova, O.N. Lasovskaya, V.P. Antonovich, V.F. Zinchenko, N.N. Golik. Titrimetric determination of main components in rareearth sulfides, fluorides and sulfofluorides // Functional Materials, 8(3), pp.555-559 (2001)
- [5] Th. Schleid. Yb₃F₄S₂: Eine gemischtvalentes Ytterbiumfluoridsulfid gemä YbF2 2YbFS // Z. Anorg. Allgem. Chem., 626, S. 2429-2431 (2000).
- [6] О.И. Сумбаев. Смещение рентгеновских К-линий при изменениях валентности и изоморфных фазовых переходах в редких землях // *Усп.физ.наук*, **124**(2), с.282-306 (1978).
- [7] Г.В. Ионова, В.Г. Вохмин, В.И. Спицын. Закономерности изменения свойств лантанидов и актинидов. Наука, М., 240 с. (1990).
- [8] Н.И. Лобачевская, А.С. Виноградова-Жаброва, Л.Д. Финкельштейн, В.Г. Бамбуров. Синтез и исследование серусодержащих фаз на основе европия, самария и иттербия. // Физика и химия редкоземельных полупроводников. Наука, Новосибирск, с.114-117 (1990).
- [9] В.Ф. Зінченко, Н.П. Єфрюшина, Г.І. Кочерба, О.Г. Єрьомін, В.П. Соболь, О.В. Мозкова, В.Я. Марків, Н.М. Білявіна. Оптичні і експлуатаційні властивості тонкоплівкових покриттів, отриманих методом вакуумного випаровування фторидів РЗМ // Фіз. і хім. твердого тіла, 2(3), с.351-360 (2001).

N.M. Bilyavina², V.F. Zinchenko¹, N.P. Efryushina¹, N.A. Chiviryova¹, V.Ya. Markiv², V.P. Antonovich¹, O.V. Mozkova³, O.V. Stamikosto¹

Conditions of Formation and Crystal Structure of Sulfofluorides Ln₃S₂F₄ (Ln = Y, Nd, Sm, Gd, Dy, Tm) in the Products of Synthesis of FFM LnSF

 ¹O.V. Bogatsky Physico-Chemical Institute of NAS of Ukraine,86, Lyustdorfska doroga, Odesa, 65080, tel.0482-61-82-25, E-mail: <u>physchem@paco.net</u>
²Taras Shevchenko National University, 60, Volodymyrska Str., Kyiv, 01003, E-mail: <u>belmar@mail.univ.kiev.ua</u>
³Central Desian Office "Arsensal", 8, Moskovska Str., Kyiv, 01010, tel 044-254-59-08, E-mail: borisgor@i.com.ua

In process of the solid-phase synthesis of the RE sulfofluorides in some products by X-ray phase analysis formation of additional phases has been revealed; their contents varies from admixtures (in the case of Y, Nd, Gd, Dy, Sm compounds) up to a prevailing phase (Tm compound). At synthesis in salt melt NaCl-KCl the contents of such phases essentially grows. The belonging of crystal structure of the specified phases to a type of $Yb_3S_2F_4$ – mixed valent compound of Yb (II, III) is established. The correlation between ability to formation of similar phases and propensity to different valence states for rare earth metals is revealed. X-ray diffraction spectrum is calculated and structure of $Tm_3S_2F_4$ is simulated. The chemical analysis has confirmed an essential deviation from stoicheometry of the composition of products synthesized in salt melts. The process of vacuum evaporation is confirmed by X-ray phase analysis and chemical analysis of the refuses and coatings to be incongruent. The coatings consists mainly from fluorides such as LnF_3 and significant part of amorphous phase, which promotes improvement of their optical properties.