УДК 621.315.592

ISSN 1729-4428

З.Д. Ковалюк, В.Б. Орлецький, О.М. Сидор, В.В. Нетяга

Дослідження електричних та оптичних властивостей бар'єрів Шоткі In/p-CuInSe₂

Інститут проблем матеріалознавства НАН України, Чернівецьке відділення, вул. І. Вільде, 5, м. Чернівці, 58001, Україна, тел: 8 (+03722) 2-00-50, E-mail: chimsp@unicom.cv.ua

Бар'єри Шоткі виготовлені шляхом термічного напилення індію на монокристали CuInSe₂ p-типу. Обговорюються температурні залежності вольт-амперних характеристик, спектри фотовідклику та інтерпретовано механізми проходження струму досліджуваних діодів. Показано, що отримані поверхневобар'єрні структури є перспективними для створення фотоперетворювачів сонячного випромінювання. Ключові слова: CuInSe₂, бар'єр Шоткі, вольт-амперні характеристики, фотовольтаїчний ефект.

Стаття поступила до редакції 01.04.2003; прийнята до друку 23.08.2003.

I. Вступ

Створення перетворювачів сонячної енергії з ефективністю більше 30% згідно міжнародної програми "Форсайт" (Великобританія) на найближчий період стоїть на першому місці у списку "найкорисніших" явищ у науці й техніці.

В останнє десятиріччя CuInSe₂ та тверді розчини CuIn_{1-x}GaxSe₂ широко вивчаються як перспективні матеріали для створення тонкоплівкових сонячних елементів низької вартості і ефективністю понад 15% [1]. Крім того, він характеризується радіаційною стійкістю [2]. Диселенід міді та індію кристалізується в халькопіритній кристалічній структурі (просторова група $D_{2d}^{12} - 1\overline{4}2d$) з параметрами елементарної комірки a = 5,78 Å, c = 11,62 Å. Він володіє прямою енергетичною зоною (Eg ≈ 1 eB) та високим коефіцієнтом поглинання (α ≥ 105 см⁻¹). Для даного матеріалу існує можливість виготовлення високоефективних перетворювачів як на основі плівка-монокристал, так і плівка-плівка.

Аналіз літературних даних свідчить, що зараз активно вивчаються гомо- та гетеропереходи, виготовлені на основі диселеніду міді та індію, проте дослідження бар'єрів Шоткі на основі CuInSe₂ носить епізодичний характер.

У даній роботі розглянуті фото- та електричні властивості контакту метал-напівпровідник In/p-CuInSe₂.

II. Експеримент

Кристали диселеніду міді та індію вирощувалися вертикальним методом Бріджмена з попередньо

синтезованих злитків стехіометричного складу з надлишком селену (до 0,5 ат.%). Концентрація та рухливість носіїв заряду визначались з холівських досліджень і складали при кімнатній температурі $1,0\cdot10^{17} - 3,0\cdot10^{17}$ см⁻³ та 20 – 50 см²B⁻¹c⁻¹ відповідно. З кристалів вирізались пластинки з середніми розмірами 5×5×0,15 мм³, що потім механічно полірувались і травились. Напівпрозорий шар індію (товщиною 0,6 мкм) наносився на поверхню напівпровідника методом термічного випаровування у вакуумі. Тильний контакт створювався напиленням шару золота. Омічність контактів перевірялась по вольт-амперним і шумовим характеристикам.

III. Результати і обговорення

При освітленні бар'єрів Шоткі In/p-CuInSe₂ зі сторони металу чітко спостерігається фотовольтаїчний ефект. Як видно з представленої на рисунку 1 світлової вольт-амперної характеристики (ВАХ) досліджуваних діодів, напруга холостого ходу при освітленні світлом лампи з густиною потоку випромінювання P = 100 мВт/см² сягала $V_{xx} \sim 0.2$ B, а короткого замикання струм дорівнював I_{ка} ~ 4.7 мА/см². Слід відмітити, що для реального фотоперетворювача в еквівалентній схемі слід враховувати не тільки послідовний опір R_s, який включає опір товщі напівпровідника і контактів, але й шунтуючий опір R_{sh}, ввімкнений паралельно бар'єрному шару. В цьому випадку світлову ВАХ можна описати наступним виразом [3]:

 $J = J_{s} \{ \exp[q(V - JR_{s})/nkT] - 1 \} + [(V - JR_{s})/R_{sh}] - J_{L}$ (1)

Рис. 1. Світлова і темнова ВАХ бар'єрів Шоткі Іп/р-СиІпSe₂ при освітленні Р = 100 мВт/см² і Т = 293 К ■ – теоретична крива, побудована згідно формули (1).

де q – заряд електрона, k – постійна Больцмана, n – діодний коефіцієнт, T – температура, J_s – густина діодного струму насичення, J_L – фотострум.

Аналізуючи світлову ВАХ згідно (1), були визначені діодні параметри R_s та R_{sh} (див. табл. 1) та побудована теоретична крива (рис. 1), яка задовільно узгоджується з експериментальною.

Вимірювання прямих та обернених темнових ВАХ при різних температурах було проведено для визначення механізмів струмопереносу в досліджуваних структурах.

Бар'єри Шоткі в інтервалі температур 240–324 К володіють яскраво вираженими діодними характеристиками. Коефіцієнти випрямлення, визначені на серії структур, при зміщенні 1,3 В досягають не менше 200 при кімнатній температурі, що корелює з літературними даними [4].

В діапазоні прямих зміщень 0 < V < 0,2 В (рис. 2) спостерігається нахил кривих ВАХ приблизно рівний одиниці (див. табл. 2), що відповідає або тунелюванню носіїв або струму, обмеженому

просторовим зарядом в режимі насичення швидкості, який задається [5, 6]:

$$J = \frac{2\varepsilon\varepsilon_0 \upsilon_{sat} A}{L^2} V,$$
 (2)

де ϵ – діелектрична константа, ϵ_0 – діелектрична проникність вакууму, υ_{sat} – швидкість насичення, А – площа діода, L – товщина напівпровідника.

Як видно з рисунка 3, початкова ділянка ВАХ при прямих зміщеннях $kT/q \ll V \ll V_{bi}$ (падіння напруги на R_s нами нехтувалось) зростає за експоненціальним законом [7]:

$$J \cong J_{s} \exp\left(\frac{qV}{nkT}\right) = A^{*}T^{2} \exp\left(\frac{-q\phi_{b}}{kT}\right) \exp\left(\frac{qV}{nkT}\right), \quad (3)$$

$$de \qquad A^{*} = \frac{4\pi qm^{*}k^{2}}{h^{3}} = 85,32 \quad A/cm^{2}K^{2} \qquad e \varphi e \kappa \tau u B H a$$

константа Річардсона для CuInSe₂, m^{*} – ефективна маса дірок, ϕ_b – висота бар'єра, h – постійна Планка. J_s, як екстраполяційна величина густини струму при нульовій напрузі, знаходиться в межах $5,28\cdot10^{-6}$ –

Таблиця 1.

Деякі світлові і темнові параметри бар'єрів Шоткі In/p-CuInSe₂ при різних температурах.

Параметри	Температура					
	240 К	255 К	274 К	296 К	324 К	
$J_{o}, A/cm^{2}$ R_{s} темновий, Ом·см ² R_{sh} темновий, Ом·см ² R_{s} світловий, Ом·см ² R_{sh} світловий, Ом·см ² V_{oc}, B $J_{sc}, MA/cm^{2}$	5,28·10 ⁻⁶ 0,49 1199	8,71·10 ⁻⁶ 0,42 927	1,78·10 ⁻⁵ 0,36 846	$5,78 \cdot 10^{-5} \\ 0,32 \\ 436 \\ 0,25 \\ 210 \\ 0,2 \\ 4,7 \\ 100$	9,9·10 ⁻⁵ 0,35 328	

Дослідження електричних та оптичних властивостей бар'єрів Шоткі...

Таблиця 2.

Темпе-	Обернене зміщення, В			Пряме зміщення, В		
ратура, К	V >3	1,5< V <3	V <1,5	0 <v<0,2< td=""><td>0,2 <v<0,5< td=""><td>V>0,5</td></v<0,5<></td></v<0,2<>	0,2 <v<0,5< td=""><td>V>0,5</td></v<0,5<>	V>0,5
240	m = 3,5	m = 1,56	m = 1,02	m = 1,1	n = 3,0	m = 2,5
255	m = 3,4	m = 1,60	m = 1,05	m = 1,07	n = 2,6	m = 2,2
274	m = 3,37	m = 1,54	m = 1,09	m = 0,98	n = 2,4	m = 2,0
296	m = 2,6	m = 1,50	m = 1,04	m = 0,96	n = 2,26	m = 2,0
324	m = 2,7	m = 1,48	m = 1,01	m = 1,27	n = 1,78	m = 2,0

Степеневий показник m i діодний коефіцієнт n, отримані з аналізу вольт-амперних характеристик при різних температурах.

9.9.10⁻⁵ Асм⁻² в залежності від температури (див. табл. 1). Коефіцієнт п, визначений з нахилу кривої Ln(J) від V, змінюється від 1,78 до 3,0. В області низьких температур, де діодний коефіцієнт має найбільше значення, присутній тунельнорекомбінаційний механізм струмопереносу. При температурах вищих кімнатної, коли n ≈ 2, струм носить рекомбінаційний характер, а при ще вищих температурах проходження струму поступово набирає надбар'єрного характеру (термоелектронна емісія), що пов'язано зі зменшенням потенціального бар'єру. Слід відмітити, що в механізми струмопроходження дає внесок й деяке тунелювання носіїв, так як криві ВАХ не сильно змінюються з температурою.

При напругах 0,5 < V < 1 В чітко проявляється квадратична залежність струму (рис. 2). Цей факт свідчить про присутність струмів, обмежених просторовим зарядом в режимі рухливості

(безпастковий квадратичний закон) [5,6]:

$$J = \frac{9\varepsilon\varepsilon_0\mu A}{8L^3}V^2,$$
(4)

де µ – рухливість дірок.

Необхідно відмітити, що присутність струмів, обмежених просторовим зарядом, як при прямих так і обернених зміщеннях вже спостерігалась для досліджуваного матеріалу [5].

При великих прямих зміщеннях відбувається компенсація вбудованого потенціалу V_{bi} прикладеною зовнішньою напругою V. Тому надлишок напруги V над V_{bi} спадає в основному на R_s . Отже, при великих прямих струмах справедливим є наступне співвідношення:

$$J \cong \frac{V - V_{bi}}{R_s} \,. \tag{5}$$

Формула (5) описує пряму лінію, котангенс кута нахилу якої дає значення R_s. Визначені значення

Рис. 2. Прямі вітки ВАХ бар'єрів Шоткі In/p-CuInSe₂ при різних температурах, побудовані у логарифмічному масштабі.

Рис. 3. Прямі вітки ВАХ бар'єрів Шоткі In/p-CuInSe₂ при різних температурах, побудовані у напівлогарифмічному масштабі.

послідовного опору в інтервалі температур 240-324 К приведені в таблиці 1. Деяке зростання послідовного опору при 324 К пов'язане в основному з зростанням опору напівпровідника, що підтверджується характером вимірів температурної залежності електропровідності на контрольних зразках.

Обернені струми, як видно з рисунка 4,

підкоряються закону J ~ V^m в усьому діапазоні

напруг (див. табл. 2).

Для зміщень 0 < V < -1,5 В характерна лінійна слабка температурна залежність ВАХ. Тому проходження струму відповідає або тунельному механізму або описується (2).

В інтервалі напруг -1,5 < V < - 3 В криві logJ - logV задаються степеневою залежністю $J \sim V^{1,48+1,6}$, що описується законом Чайлда-Лангмюра

Рис. 4. Обернені вітки ВАХ бар'єрів Шоткі In/p-CuInSe₂ при різних температурах, побудовані у логарифмічному масштабі.

Рис. 5. Залежність відносної квантової ефективності фотоперетворення η від hν для бар'єрів Шоткі In/p-CuInSe₂. На вставці представлено залежність (ηhν)² від hν для визначення E_g.

(струми обмежені просторовим зарядом в балістичному режимі) [5,6]:

$$J = \frac{4\varepsilon}{9L^2} \left(\frac{2q}{m^*}\right)^{1/2} V^{3/2},$$
 (6)

При більших обернених зміщеннях степеневий показник зростає до 2,6 < m < 3,5. Для цієї ситуації описати залежність струму від напруги можна при врахуванні неперервного (експоненціального) розподілу пасток по енергіях [6]:

$$J \approx q\mu N_{\upsilon} \left(\frac{\varepsilon}{qN_{0}kT_{t}}\right)^{m} \frac{1}{L^{2m+1}} V^{m+1}, \qquad (7)$$

де N_{υ} – ефективна густина станів у валентній зоні, $N_0 = N_t(E)/exp[-E/kT_t]$, $N_t(E)$ – концентрація рівнів прилипання, що приходиться на одиницю енергії, T_t – температурний параметр.

З аналізу вольт-фарадних характеристик було знайдено величину вбудованого потенціалу V_{bi} , яка при кімнатній температурі дорівнювала 0,35 еВ. З врахуванням обчисленої глибини залягання рівня Фермі, значення ϕ_b для отриманих структур знаходиться в межах 0,45 – 0,48 еВ при 296 К.

Висоту бар'єра також можна знайти з виразу [7]:

$$\rho_{\rm b} = \frac{kT}{q} \ln\left(\frac{\mathbf{A}^* \mathbf{T}^2}{\mathbf{J}_{\rm s}}\right). \tag{8}$$

Використовуючи розраховані вище величини, значення ϕ_b при кімнатній температурі складає ~0,65 eB.

Зауважимо, що визначення ϕ_b згідно (8) не є достатньо точним через відхилення фактора неідеальності від одиниці.

На рисунку 5 приведено спектральну залежність

відносної квантової ефективності фотоперетворення η, що рівна відношенню фотоструму короткого замикання до числа падаючих фотонів.

Довгохвильовий край залежності $\eta(hv)$ бар'єрів Шоткі при $hv \le 1$ еВ експоненціальний і характеризується $S = d(ln\eta)/d(hv) \approx 50$ еВ⁻¹ крутизною що дозволяє рахувати міжзонні оптичні переходи прямими. Екстраполяція кривої $(\eta hv)^2$ до нуля (рис. 5, вставка) дозволяє отримати значення енергії, яке відповідає ширині забороненої зони CuInSe₂ $E_g = 0.98$ еВ, що цілком погоджується з літературними даними [4,5].

Досягнутий в досліджуваних діодах широкосмуговий фотовольтаїчний ефект свідчить про високу якість структур. Слід відмітити, що короткохвильовий спад η практично не проявляється. Повна ширина спектра квантової ефективності фотоперетворення на напіввисоті є доволі значною і рівна $\delta_{1/2} > 2$ eB.

IV. Висновки

Бар'єри Шоткі отримувались методом термічного напилення плівки індію на монокристалічні зразки р-CuInSe₂. Аналіз температурних залежностей ВАХ в області прямих зміщень показує наявність трьох основних механізмів струмопереносу: рекомбінаційний термоелектронна емісія, та тунельно-рекомбінаційний. Поведінка обернених віток ВАХ характерна для струмів, обмежених просторовим зарядом. Фотовольтаїчні вимірювання свідчать про широкосмуговий характер спектрального контуру фотоструму.

Одержані бар'єри та приведені результати експериментальних досліджень показують перспективність даного напрямку і при відповідній оптимізації технологічних і фізичних параметрів можуть привести до суттєвого покращення фотоелектричних показників, так як це було зроблено нами в [8]. Ковалюк З.Д. – доктор фізико-математичних наук, професор; Орлецький В.Б. – кандидат фізико-математичних наук, старший науковий співробітник; Сидор О.М. – аспірант; Нетяга В.В. – молодший науковий співробітник.

- H.-W. Schock. Solar cells based on CuInSe₂ and related compounds: recent progress in Europe // Solar Energy Materials & Solar Cells, 34, pp. 19–26 (1994).
- [2] C.F. Gay, R.R. Potter, D.P. Tanner, B.E. Anspaugh. Radiation effects on thin film solar cells // *Proceeding of the* 17th IEEE Photovoltaic Specialists Conference, p. 151 (1984).
- [3] В.И. Стриха, С.С. Кильчицкая. Солнечные элементы на основе контакта металл полупроводник. Энергоатомиздат, СПб., 136 с. (1991).
- [4] М.А. Магомедов, В.Д. Прочухан, Ю.В. Рудь. Фотоэлектрические свойства диодов Шоттки In-p-CuInSe₂ // ФТП, 26(11), сс. 1996–2000 (1992).
- [5] E. Hernandez. Space-charge-limited current effects in p-type CuIn_{0.8}Ga_{0.2}Se₂/In Schottky diodes // Cryst. Res. Tech., 33(2), pp. 285–289 (1998).
- [6] М. Ламперт, П. Марк. Инжекционные токи в твердых телах. Мир, М., 416 с. (1973).
- [7] С. Зи. Физика полупроводниковых приборов: В 2-х книгах. Кн. 2. Мир, М., 456 с. (1984).
- [8] S.I. Drapak, Z.D. Kovalyuk, V.V. Netyaga, V.B. Orletskii. Radiation stable photodetectors based on layered III-VI compounds // Proceedings of International conference "Science for materials in the Frontier of Centuries: Advantages and Challenges", Kyiv, Ukraine, pp. 129–130 (2002).

Z.D. Kovalyuk, V.B. Orletskyy, O.M. Sydor, V.V. Netyaga

Research electrical and optical behaviour Barriers Shottki In/p-CuInSe₂

Institute for Problems of Materials Science, NAS of Ukraine, Chernivtsi branch, 5, I. Vilde Str., Chernivtsi, 58001, Ukraine

The Schottky barriers are made by thermal evaporation indium on p-type $CuInSe_2$ single crystals. The temperature dependences of current-voltage characteristics and relative quantum efficiencies are discussed; current transport mechanisms of the prepared diodes are interpreted. It is shown that the received surface-barrier structures are perspective as photoconverters of solar radiation.