УДК. 541.11/123 + 621.315.592

ISSN 1729-4428

В.М. Мороз, А.І. Щурок, О.Г. Миколайчук, М.В. Бялик, В.Ф. Орленко, Д.І. Олексин, М.В. Мороз

Система Ag-Sn-Se. Особливості структури Т-х простору

Український державний університет водного господарства та природокористування, вул. Соборна, 11, Рівне, 33000, Україна. E-mail: <u>Solidus@rstu.rv.ua</u>

Описується Т-х простір системи лідження сплавів методами фізико-хімічного аналізу. В підсолідусній ділянці простору, в частині Ag-Sn-Se в -Ag, при ~ 824 К має місце зміна способу поділу системи на підсистеми як результат перебігу частині Ag-Sn-SnSe-Ag₈SnSe₆-Ag₂Se-Ag, побудований по результатах експериментального досAg-ζ-фаза-SnSe-Ag₈SnSe₆-Ag₂Se оборотної хімічної реакції витіснення.

Ключові слова: фази, рівновага, діаграма стану.

Стаття поступила до редакції 15.04.2003; прийнята до друку 23.08.2003.

I. Вступ

Р-Т-х простір потрійних та більш складних неорганічних систем не виключає із своїх структур оборотних хімічних реакцій заміщення або витіснення. Аналітичне моделювання на термодинамічному рівні пізнання умов перебігу проведено в [1]. таких реакцій Вивчалась температурна поведінка значень характеристичних функцій гіпотетичної обмінної хімічної реакції в залежності від різниці сумарних теплоємностей початкових та кінцевих її учасників ΔC_p . Показано, що в найпростішому випадку лінійної зміни з температурою ΔC_p , її знаку та кутового коефіцієнта може мати місце як зміна знаку енергії Гібса ΔG для процесу утворення рівноважної суміші фаз, так і осциляція ΔG навколо осі температур. В [2] окреслено коло неорганічних систем, до яких віднесені силікатні, оксидні, металічні де можливі такі реакції за умови існування в них фаз, здатних до обміну своїми частинами. По обидві сторони температури оборотної реакції Т, в рівноважному Р-Т-х просторі, кожна із фаз, учасників реакції, досягає рівноважного стану з іншим набором фаз як через зміну області існування, так і через зміну дефектної структури гратки, зокрема, структури ближнього порядку. Такі структурні зміни диктуються вимогою рівності хімічних потенціалів елементів в кожній із фаз. Є вірогідність незавершеності перебудовчих процесів по обидві сторони температури оборотної реакції як в гетерогенній області, так і в структурі

окремих фаз навіть при відносно високих температурах, коли кінетичними перешкодами перебудовам можна знехтувати. На перший план може вийти термодинамічний фактор, обумовлений зміною вкладу величини поверхневої енергії фаз в загальний енергетичний баланс реакції [3]. Не виключається випадок такої температурної поведінки теплоємностей фаз, учасників реакції, коли ΔG залишається близькою до нуля в широкому інтервалі температур. Проміжною ланкою в перебудовчому процесі за цих умов може бути утворення структурноневпорядкованих, нетермодинамічно стабільних склоподібних, склокристалічних та рентгеноаморфних об'єднань. Реально пе в неефективності довготривалих проявляється відпалів гетерогенних сплавів по досягненню рівноважного стану. Для гомогенних сплавів напівпровідникових фаз прогнозується, в таких випадках, плинність важливіших напівпровідникових параметрів як в часі, так і при короткочасній дії всеможливих зовнішніх факторів. Трудноші в досягненні рівноважного стану сплавів переносяться на вибір рівноважної моделі Р-Т-х простору, що знаходить своє відображення в суперечливих діаграмах стану конкретних систем, наведених в фахових виданнях.

Проведені нами оціночні розрахунки значень енергії Гібса ΔG для процесу утворення рівноважних сумішей фаз в системах A^{I} - B^{IV} - C^{VI} (A^{I} -Cu, Ag; B^{IV} -Si, Ge, Sn; C^{VI} -S, Se, Te) показали, що окремі частини їх T-х простору можуть мати структуру взаємних систем з витісненням. Це стосується, зокрема, системи Ag-Sn-Se, для якої не виключаються реакції виду:

$$Ag_2Se + SnSe \ge 2Ag + SnSe_2$$
 (1)

 $a\cdot Ag_{_2}Se + b\cdot SnSe \underset{\leftarrow}{\rightarrow} c\cdot Ag_{_8}SnSe_{_6} + d\cdot \zeta - \varphi a a^{\square e - a},$

b, c, d-числові коефіцієнти, ζ-проміжна фаза системи Ag-Sn. Експериментальне дослідження температурної поведінки сплавів в частині Ag-Sn-SnSe-Ag₈SnSe₆-Ag₂Se-Ag проведено з метою оцінки

Рис. 1. Проекція поверхні ліквідуса досліджуваної частини системи на площину концентраційного трикутника.

імовірності перебігу реакцій (1) та (2).

Концентраційний трикутник системи Ag-Sn-Se формують три подвійні системи: Ag-Sn [4], Ag-Se [5] та Sn-Se [5]. Роботи [6,7] описують фазові рівноваги в Т-х площині розрізу Ag₂Se-SnSe₂. Виявлена єдина потрійна сполука складу Ag₈SnSe₆ з інконгруентним видом плавлення при 1008 К, яка зазнає структурного перетворення при 356 К. Евтектичний сплав містить ~57 мол.% SnSe₂ та плавиться при 778 К. В [8] описується Т-х простір сплавів концентраційного трикутника системи. Плавлення сполуки Ag₈SnSe₆ знайдено конгруентним при 1017 К. Виявлено потрійну фазу змінного складу в околі AgSnSe2 з інконгруентним видом плавлення. Розріз Ag₂Se-SnSe₂ не є квазібінарним, оскільки перетинається полем виділення фази AgSnSe₂. Квазібінарними виявлено розрізи Ag₂Se-SnSe, Ag₂Se-Ag₈SnSe₆, Ag₈SnSe₆-SnSe та Ag₈SnSe₆-Se. Області незмішування у рідкій фазі, започатковані на ділянках Sn-SnSe та Ag-Ag₂Se перетинаються по коноді, температура для якої становить 933 К. Дві рідини коноди при зазначеній температурі в процесі охолодження формують сплав розрізу Ag-SnSe як двофазний. Евтектичний сплав розрізу Ag₂Se-SnSe містить ~22 мол.% SnSe і плавиться при температурі 824 К. Потрійні евтектики підсистем Ag₂Se-Ag₈SnSe₆-SnSe та Ag-Ag₂Se-SnSe, з температурами плавлення, відповідно, 815 К та 823 К мало відрізняються по кількісному вмісту елементів як між собою, так і зі складом евтектики розрізу Ag₂Se-SnSe.

II. Експеримент

Сплави готували із порошкоподібних елементів, сумарний вміст домішок в яких менший 10-3%. Рівноважний в підсолідусному інтервалі температур стан в сплавах п'ятикутника Ag-ζ-фаза-SnSe-Ag₈SnSe₆-Ag₂Se-Ag досягався двогодинною витримкою добре перемішаних елементів при температурі ~750 К. Сплави з відносно високим вмістом олова піддавали 2÷3- кратному проміжному перетиранню. Суміші елементів трикутника є-фаза-Sn-SnSe перед дослідженням проплавлялись. Ампули з елементами для синтезу, відпалів та термічного дослідження сплавів попередньо вакуумувались до залишкового тиску ~1 Па. Дослідження проводили класичними методами фізико-хімічного аналізу. Маса наважок для термічних досліджень становила (150÷500)·10⁻⁶ кг. Швидкість нагріву та охолодження знаходилась в околі 0,1 К·с⁻¹. Фазовий вміст сплавів встановлювався за даними рентгенофазового та мікроструктурного аналізів. Градуювання хромельалюмелевих термопар здійснено по температурах плавлення олова (505 К), телуру (723 К), алюмінію (932 К), срібла (1234 К), міді (1356 К). Похибка значень температур структурних змін в сплавах не перевищує ±5 К.

III. Результати і обговорення

Проекція поверхні ліквідуса досліджуваної частини системи на площину концентраційного трикутника подана на мал.1, а таблиця відображає зміст безваріантних процесів в сплавах системи.

Значна концентраційна протяжність α-, ζ- та εфаз системи Ag-Sn не характерна для триелементної частини системи Ag-Sn-Se. Розчинність сірки в зазначених фазах не перевищує 1 ат. %. В околі кімнатних температур двофазні сплави між частинами системи Ag-Sn гомогенними та моноселенідом олова формуються по вузьких лініях орієнтовного складу крайніх точок: Ag₉₇Sn₃-Sn₄₇Se₅₃; $Ag_{86}Sn_{14}-Sn_{47}Se_{53}$ та Ag₇₅Sn₂₅-Sn₄₇Se₅₃. Область існування моноселеніду олова знаходиться в околі складу Sn₄₇Se₅₃ (в подальшому SnSe). Двофазними в околі кімнатних температур є сплави розрізів Ag₈SnSe₆-Sn₄₇Se₅₃; Ag₂Se-Sn₄₇Se₅₃ Ta Ag₂Se-Ag₈SnSe₆. Сполука Ag₈SnSe₆ утворюється при температурі 1018 К по перитектичній схемі взаємодії селеніду срібла з розплавом та змінює структуру гратки при 356 К. Розріз Ag₈SnSe₆-SnSe частково квазібінарний, оскільки межова лінія перитектичного процесу утворення фази Ag₈SnSe₆ заходить в Т-х простір трикутника Ag₂Se-SnSe-Ag₈SnSe₆. Евтектичний сплав розрізу Ag₈SnSe₆-SnSe містить ~45 ат. % срібла та плавиться при 875 К. Первинна кристалізація сплавів розрізу Ag₂Se-SnSe із вмістом срібла ~50÷62 ат.% характеризується незначним тепловим ефектом і пов'язана з виділенням срібла. Прецезійне вивчення поверхні ліквідуса в околі зазначеної ділянки розрізу виявило заходження лінії вторинної кристалізації

Таблиця 1.

Позначення	Зміст процесу	Температура процесу, К
P ₁	$L + Ag_2Se \rightarrow Ag + Ag_8SnSe_6$	965
P_2	$L + Ag \rightarrow \zeta - \varphi a_3a + Ag_8 SnSe_6$	960
\mathbf{P}_3	$L_1 + Ag \rightarrow \zeta - \varphi a_3a + SnSe$	930
P_4	$L_2 + Ag \rightarrow \zeta - \varphi a a + SnSe$	930
P ₅	$L + \zeta - \varphi a a a \rightarrow \varepsilon - \varphi a a a + SnSe$	745
E_1	$L \rightarrow \zeta - \varphi a a + SnSe + Ag_sSnSe_6$	838
	Твердофазний процес:	
	$\zeta - \varphi_{a3a} + SnSe + Ag_8SnSe_6 \rightarrow Ag_2Se + SnSe$	824
E_2	$L \rightarrow \epsilon - \phi a a a + SnSe + Sn$	575

Таблиця безваріантних процесів.

срібла та селеніду срібла в Т-х простір Ag₂Se-SnSe-Ag₈SnSe₆. Нагрів сплавів чотирикутника Ag-ζ-фаза-SnSe-Ag₂Se-Ag, включаючи сплави розрізу Ag₂Se-SnSe (область А), супроводжується тепловим започаткованим при 833 К. Вигляд ефектом, диференціальних термограм вказує на два, слідуючі один за одним, з різницею в 3÷5 К процеси зміни структури сплавів. Структура профілю теплових максимумів на термограмах сплавів з ділянки Ag₂Se-Ag₈SnSe₆-SnSe (область В), започаткованих при 824 К, аналогічна описаній для сплавів області А. Охолодження сплавів областей А та В в околі зазначених температур також супроводжується двома близькими по температурі початку тепловими виділеннями. При температурі 838 К завершується кристалізація розплавів. Наступний твердофазний процес, з оціночною температурою 824 К, має явно активаційний характер з варіацією температури початку ±5÷15 К. Максимум сумісного теплового ефекту як при нагріві, так і при охолодженні виявляють сплави з околу сплаву розрізу Ag₂Se-SnSe із вмістом срібла ~50 ат.%. Загартуванням у воді від температур ~900 К сплавів з області А, фіксується фаза Ag₈SnSe₆, яка виявляється при подальшому нагріві через тепловий ефект структурного перетворення при 356 К. Зафіксувати фазу Ag₈SnSe₆ на рентгенограмах від загартованих сплавів області А не вдається, оскільки вона розпадається на етапі підготовки матеріалу до аналізу. Започатковані при нагріві сплавів областей А та В теплові ефекти, відповідно при 833 К та 824 К, відображають єдиний процес формування розрізу Ag₈SnSe₆-ζ-фаза як двофазного. Неспівпадання температур початку твердофазних реакцій витіснення в областях А та В є наслідком відмінності їх стартового фазового складу

та активаційної природи процесу. Зазначена особливість переходу в сплавах від одного набору рівноважних фаз до іншого не містить ознак порушення базових принципів фізико-хімічного аналізу. В області A, при температурі 833 К формується також розріз Ag₂Se-ζ-фаза як двофазний.

Поля виділення срібла та моноселеніду олова займають, як показано на рис. 1, значну частину поверхні ліквідуса системи. Започатковані на ділянках Ag-Ag₂Se та SnSe-Sn поверхні ліквідуса розшарування в рідкій фазі поширюються в трифазну область, де перетинаються по коноді при температурі ~930 К. Подальше пониження температури двох рідин згаданої коноди L₁ та L₂ завершується перитектичними процесами виділення моноселеніду олова та С-фази. Нижче 930 К сплави розрізу С-фаза-SnSe є двофазними. Поле виділення ζ-фази поблизу розрізу Ag₂Se-SnSe, якісно зображене на рис. 1, займає малу частину поверхні ліквідуса та крутизною. характеризується ïï значною Завершується кристалізація сплавів досліджуваної частини системи сумісним виділенням потрійної фази Ag₈SnSe₆, моноселеніду олова та ζ-фази, а також олова, селеніду олова та є-фази. Безваріантний твердофазний процес при ~824 К для складу потрійної евтектики проходить, в основному, з утворенням селеніду срібла та моноселеніду олова, тобто з формуванням розрізу Ag₂Se-SnSe як двофазного.

IV. Висновок.

Побудована проекція поверхні ліквідуса системи Ag-Sn-Se на площину концентраційного трикутника в частині Ag-Sn-SnSe-Ag₈SnSe₆-Ag₂Se-Ag. В підсолідусній частині Ag-ζ-фаза-SnSe-Ag₈SnSe₆-Ag₂Se-Ag має місце зміна способу поділу системи на підсистеми через формування (розпад) розрізу Ag₈SnSe₆-ζ-фаза як двофазного. Для сплавів напівпровідникових фаз Ag₂Se, Ag₈SnSe₆ та SnSe, одержаних при температурах вищих 824 K, прогнозуються зміни в структурі енергетичного спектру заборонених зон в околі кімнатних температур як результат перебігу оборотної реакції.

- [1] Н.К. Воскресенская. Термодинамическое обоснование правила Каблукова // Ж. неорган. химии, **8**(5), сс. 1190-1195 (1963).
- [2] В.Я. Аносов, М.И. Озерова, Ю.А. Фиалков. Основы физико-химического анализа. Наука, М. 503 с. (1976).
- [3] В.А. Киреев. *Курс физической химии*. Химия, М. 775 с. (1975).
- [4] М. Хансен, К. Андерко. Структуры двойных сплавов. Металлургия, М. Т.1, 608 с. (1962).
- [5] Н.Х. Абрикосов, Л.Е. Шелимова. Полупроводниковые материалы на основе A^{IV}B^{VI}. Наука, М. 195 с. (1975).
- [6] O. Gorochov. Les composes Ag₈MX₆ (M=Si, Ge, Sn et X=S, Se, Te) // Bull. Soc. Chim. France, 6, pp. 2263-2275 (1968).
- [7] O. Gorochov, R. Fichet, J. Flahaut. Diagramme de phase et properties du system Ag₂Se-SnSe₂ // C. R. Acad. Sci., 203, pp. 1422-1427 (1966).
- [8] R. Ollitrault-Fichet, R. Rivet, J. Flahaut et al. Description du systeme ternaire Ag-Sn-Se // J. Less-Comm. Met., 138, pp. 241-261 (1988).

V.M. Moroz, A.I. Schurok, O.G. Mykolaychuk, M.V. Byalyk, V.F. Orlenko, D.I. Oleksyn, M.B. Moroz

System Ag-Sn-Se. The Peculiarities of Structure T-x Space

Ukrainian State University of Water Economy and Nature Management, 11, Soborna Str., Rivne, 33000, Ukraine, E-mail: <u>Solidus@rstu.rv.ua</u>

The T-x space of system Ag-Sn - Se is described in part Ag-Sn-SnSe-Ag₈SnSe₆-Ag₂Se-Ag, which is constructed by results of the experimental research of alloys by methods of the chemical-physical analysis. The change of the way of division of the system into subsystems takes place in subsolidus site of space, in part Ag- ζ -phase-SnSe-Ag₈SnSe₆-Ag₂Se-Ag, at ~ 824 K as a result of a course of inverse chemical reaction of replacement.