УДК 621.315.592:535

ISSN 1729-4428

П.М. Фочук, О.Е. Панчук, Л.П. Щербак

Природа домінуючих точкових дефектів у кристалах CdTe: область насичення Cd

Чернівецький національний університет імені Юрія Федьковича, вул. Коцюбинського, 2, Чернівці, 58012, Україна e-mail: <u>fochuk@chnu.cv.ua</u> meл: +380 (372) 58-47-45

Проведено високотемпературні вимірювання (ВТВ) ефекту Холла нелегованого CdTe, вирощеного методом Бріджмена та THM (Traveling Heater Method). Встановлено, що в температурному діапазоні 600-

900°С домінуючим власним донорним дефектом є Cd $_{i}^{2+}$ з ентальпією утворення ~ 2,1 еВ. Моделювання дефектної структури нелегованого CdTe показало задовільне узгодження з експериментом.

Ключові слова: телурид кадмію; високотемпературні вимірювання; ефект Холла; точкові дефекти; дефектна структура; моделювання.

Стаття поступила до редакції 12.09.2003; прийнята до друку 19.11.2003.

I. Вступ

СdТе вже досить довго привертає увагу дослідників як перспективний матеріал ЛЛЯ виробництва пристроїв ІЧ оптики, сонячних батарей, детекторів іонізуючого випромінювання, підкладок для CdZnTe та CdHgTe, активних елементів нелінійної оптики [1-3]. Але його більш широкому застосуванню заважає відсутність вичерпних знань про спектр точкових дефектів (ТД) при високих температурах та вміння перетворити його в процесі охолодження на такий, що забезпечить необхідні при експлуатаційних властивості кристала температурах.

Стан високотемпературної рівноваги дефектів можна вивчати методом вимірювань ефекту Хола в цих умовах і за одержаними залежностями концентрації носіїв від температури, тиску пари компонента чи активності домішки будувати відповідні діаграми дефектів, а також визначати константи відповідних реакцій дефектоутворення.

Вперше детально структуру власних дефектів в CdTe описав Нобель, грунтуючись на результатах низькотемпературних вимірювань (HTB) ефекту Хола [4]. Він також розрахував перші константи дефектоутворення в CdTe і відповідні значення термодинамічних функцій, використовуючи їх для прогнозування дефектної структури (ДС) CdTe. За його міркуваннями домінуючими зарядженими дефектами в області насиченій кадмієм є електрони та компенсуючі їх центри Cd_i^+ . Але, як показали ВТВ питомої електропровідності σ зразків нелегованого CdTe при T = 490-950°C, проведені Уіленом [5] під P_{Cd}, отриманий ними нахил $\gamma = 1/3$ (а не 1/2, як у Нобеля) в залежності Ід σ від ІдP_{Cd} може реалізовуватися лише тоді, коли домінуючим дефектом в цих умовах буде не однозарядний, а двозарядний власний міжвузловий донор, наприклад, атом Cd – Cd_i²⁺. Дещо пізніше це було підтверджено також дослідженнями Зеніо [6] та Сміта [7].

Подальші експерименти прямого визначення концентрації [e] у нелегованому CdTe за даними ВТВ ефекту Хола, проведені Черном [8], підтвердили попередні результати [5-7]. Черн теж отримав нахил $\gamma = 1/3$, для залежностей lg[e⁻] від lgP_{Cd} у всьому інтервалі досліджуваних температур Т=600-950°С. І, на його думку, основним донорним дефектом для області Р_{Сd} повинен бути двозарядний міжвузловий донор. В ролі такого донора може виступати як так і V_{Te}²⁺. Зокрема, $\operatorname{Cd}_{i}^{2+}$, проводячи високотемпературні вимірювання ефекту Хола та Черн комп'ютерне моделювання ДС CdTe, використовував значення ентальпії впровадження основного донорного дефекту – міжвузлового кадмію $-\Delta H_{Cd^{2+}} = -2,28$ eB, яке запропонував Нобель і для більшості випадків його моделі непогано узгоджувались з експериментом [8].

Рис. 1. Температурна залежність рухливості електронів в нелегованому CdTe.

Але згодом Рудь [9], на основі результатів високотемпературних вимірювань питомої електропровідності, отримав величину $\Delta H_{Cd^{2+}} = -1,1$ еВ, яка у 2 рази менша, ніж у Нобеля.

Крім значення ΔH_{Cdi} , ще не до кінця вирішеною проблемою є природа домінуючого донора в області насичених тисків пари Cd, оскільки деякими

дослідниками на цю роль пропонуються інші власні ТД. Зокрема, Сміт [7], Черн [8], Рудь та Санін [9], Медведев [10] вважають, що в температурному інтервалі до 1100 К домінують V_{Te}^{2+} , а при T > 1100 К – Cd₁²⁺. Вінеке [11] пропонує V_{Te}^{2+} , як домінуючий дефект, для всіх досліджуваних температур.

Рис. 2. Тискова залежність концентрації електронів (зразок 2).

Рис. 3. Температурна залежність концентрації електронів для ізобар P_{Cd} = 0,01; 0,1 та 1 атм для зразка 1 (відкриті символи) та 2 (заповнені символи).

Розрахунки дефектної структури CdTe на основі квантово-механічних та термодинамічних уявлень про будову речовини, проведені в 1996-2003 рр., теж не прояснили ситуацію. За обчисленнями, проведеними Бердінг [12-13], виходить, що $[Cd_i^{2+}] >> [V_{Te}^{2+}]$. Чен зі співавторами [14] отримав 2 варіанти "відповіді" – 1) $V_{Te}^{2+}(<<Cd_{Te}^{0})$ та 2) $[V_{Te}^{2+}]$ - $[Cd_i^{2+}]$ - $[Cd_{Te}^{0}]$. Для Бребріка [15] домінуючими залишилися V_{Te}^{2+} .

Тому метою наших досліджень було уточнення природи та ентальпії впровадження домінуючого міжвузлового власного донора в гратку CdTe в області насичених тисків пари Cd. Для цього була виміряна провідність, рухливість та [e⁻] в зразках CdTe в температурному інтервалі 600-900°C і $P_{Cd} = 0,1-3$ атм.

II. Експеримент

ВТВ ЕХ проводили шестизондовим методом на зразках розміром 2,5х2,5х15 мм³ на притискних графітових контактах при постійному струмі живлення зразка та магніту. Держак зі зразком знаходився у вакуумованій ампулі в двозонній печі, де одна зона забезпечувала температуру зразка, а друга – температуру Cd. Регулювання обох зон здійснювалося комп'ютером, який отримував сигнал від 2 термопар, розташованих, відповідно, біля зразка і холоднішого кінця ампули, температура якого і визначала тиск Cd. Точність підтримання температури становила ± 0,5 К. Температура обох зон могла змінюватися лінійно в широкому інтервалі швидкостей як при нагріванні, так і при охолодженні. Як правило, температура зони зразка була на 20 К вища за максимальну температуру компонента (при Р_{макс}). Керування всією комутацією та зняттям сигналів з усіх пар контактів та термопар здійснювали за допомогою комп'ютера і вольтметра B7-34A.

III. Результати та обговорення

Для досліджень вибрали 2 зразки нелегованого CdTe, вирощених різними методами. Зразок 1 був отриманий методом THM, 2 – методом Бріджмена.

Температурні залежності рухливості електронів, які були домінуючими носіями заряду, приведені на рис. 1. Вони практично співпадають з результатами Сміта. Такі значення і їх зміна з температурою є характерними для CdTe.

Для ізотермічних залежностей концентрації електронів (рис. 2) нахил всіх ліній (T > 600°C) були

Таблиця

Нахил ізобар в температурних залежностях для нелегованого CdTe при фіксованому тиску пари Cd

Зразок	0,01 атм	0,1 атм	1 атм
1	0,70	0,73	0,66
2	0,70	0,67	0,76

Рис. 4. Температурна залежність концентрації дефектів (ізобара $P_{Cd} = 1$ атм): $1 - [V_{Cd}^{-}]; 2 - [V_{Cd}^{2-}]; 3 - [Cd_i^{2+}]; 4 - [Te_i^{-}]; 5 - [V_{Te}^{2+}];$ експеримент: зразок 1 – ромби, зразок 2 – квадрати.

в межах $\gamma = 0,28-0,31$, як і в [7-9]. Це свідчить, що домінуючими донорами при цих умовах є двозарядні власні точкові дефекти (Cd₁²⁺ або V_{Te}²⁺). Лише при T $\leq 500^{\circ}$ C $\gamma = 0,04$, тобто починає проявлятися значний вплив неконтрольованих електрично активних домішок (їх концентрацію можна оцінити величиною ~3-5 $\cdot 10^{15}$ см⁻³).

Вимірювання питомої електропровідності σ дало найбільш цікавий результат – нахил залежності lg σ = f(1000/T) виявився точно як у [9], тобто $\Delta E = 0.45 \pm 0.01$ eB. Але, як показано нами раніше [16], ці дані використовувати для розрахунку будьяких термодинамічних параметрів не можна (і, в багатьох випадках, ризиковано це робити навіть для якісної інтерпретації експерименту). Основою таких обчислень може виступати тільки пряме визначення концентрації носіїв заряду.

Результати баричних залежностей для досліджуваних зразків приведені у таблиці для інтервалу тисків пари Cd 0,01-1 атм та на рис. 3. Видно, що при апроксимації експериментальних залежностями прямими лініями, їх нахил знаходиться в межах 0,66-0,76. Якщо усереднити отримані числа, то усер. = 0,70. Однією з причин розбіжності даних в таблиці може бути викликана тим, що отримані лінії при детальному розгляді не є прямими, а трохи випуклі до початку координат, тому лінії тренду, усереднені різним числом експериментальних точок неоднакових досліджуваних температурних інтервалах, дають розкид результатів.

Оскільки відомо [9], що $n = K^{1/3} P_{Cd}^{1/3}$, і $n = n_0 \exp(-\frac{\Delta H_{D^{2+}}}{3kT})$, то інтервал можливих значень

ентальпії впровадження власного міжвузлового донора ΔH₂₂₊, визначених з рис. 3, буде:

$$\Delta H = 3 \cdot (0,66-0,76) = 2,0-2,3 \text{ eB},$$

а усереднена величина становитиме $\Delta H_{cep} \approx 3.0,70 \approx 2,1 \text{ eB}.$ Запишемо реакції впровадження можливих

Запишемо реакції впровадження можливих власних двозарядних донорів з газової фази і відповідні їм константи рівноваги:

а) для міжвузлового кадмію Cd_i^{2+} :

$$Cd(g) \leftrightarrow Cd_i^{2+} + 2e^-,$$
 (1)

$$K_9 = [Cd_i^{2+}][e^{-}]^2 P_{Cd}^{-1}, \qquad (2)$$

де $\Delta H_9 = 2,28 \text{ eB}$ [4].

б) для вакансії телуру V $_{Te}^{2+}$:

$$Cd(v) \leftrightarrow Cd_{Cd}^{x} + V_{Te}^{2+} + 2e^{-}, \qquad (3)$$

$$K_8 = [V_{Te}^{2+}][e^{-}]^2 P_{Cd}^{-1}, \qquad (4)$$

де $\Delta H_8 = 1,5$ eB [8].

Як видно, експериментально визначене значення $\Delta H_{D^{2+}} = 2,1 \text{ eB}$ близьке до запропонованого для Cd_i^{2+} Нобелем – 2,28 eB і суттєво відрізняється від відповідної величини для V_{Te}^{2+} – 1,5 eB. Це дозволяє припустити, що домінуючим власним дефектом в області насичених тисків пари Cd слід вважати Cd $_i^{2+}$ з ентальпією впровадження $\Delta H_{Cd_i^{2+}} \approx 2,1 \text{ eB}$. Це практично співпадає з раніше запропонованим нами значенням $\Delta H_{Cd_i^{2+}} = 2,09 \text{ eB}$ [17], отриманим методами оптимізації.

Побудовані моделі дефектної структури нелегованого CdTe для $P_{Cd} = 0,01$ атм (рис. 4) із значенням $\Delta H_{Cd_i^{2+}} = 2,09$ eB [17] задовільно узгоджуються з отриманими експериментальними

результатами. В усьому температурному інтервалі 600-800°С концентрація електронів [e⁻] визначається концентрацією [Cd_i²⁺] і втручання у цей процес V_{Te}²⁺ можна прогнозувати лише при T << 600°С. При підвищенні температури до 900°С суттєво збільшується V_{Cd}⁻, що може впливати на лінійність залежності lg[e⁻] від 1000/Т.

IV. Висновки

Домінуючим власним точковим дефектом в нелегованому CdTe в області насиченої пари Cd при T > 600 C, скоріш за все, є Cd^{2+}_i . Ентальпія впровадження цього дефекту $\Delta H_{Cd^{2+}} \approx 2,1$ еВ.

Моделювання тискових та температурних залежностей концентрації електронів для нелегованого CdTe в інтервалі температур 600-800°С та тисків 0,01-1 атм дає задовільне узгодження з експериментом.

Фочук П.М. – кандидат хімічних наук, доцент; **Панчук О.Е.** – доктор хімічних наук, професор; **Щербак Л.П.** – кандидат хімічних наук, доцент.

- Y. Eisen, A. Shor, I. Mardor. CdZnTe and Cd_{1-x}Zn_xTe gamma-ray detector for medical and industrial imaging system // Nucl. Instrum. Methods., A 428(1-2), pp. 158-160 (1999).
- [2] C. Scheiber, G.C. Giakos. Medical applications of CdTe and CdZnTe detectors // Nucl. Instrum. Methods, A428(1-2), pp. 12-25 (1999).
- [3] K. Shcherbin, S. Odoulov, F. Ramaz, B. Farid, B. Briat, H.J. von Bardeleben, I. Rarenko, O. Panchuk, P. Fochuk. Characterization of photorefractive CdTe:Ge // Optics and Optoelectronics. K. Singh ed. (Narosa. Dehra Dun. India.), **2**, pp. 924-931 (1998).
- [4] D. Nobel. Phase equilibria and conducting properties of cadmium telluride // J. Phil. Res. Repts., 14, pp. 361-399, 430-492 (1959).
- [5] R.C. Whelan, D. Shaw. Evidence of a double ionized native donor in CdTe // Phys. Stat. Sol., 29(1), pp. 145-152 (1968).
- [6] K. Zanio. Characterization of foreign atoms and native defects in single crystals of cadmium telluride by high-temperature conductivity measurements // J. Appl. Phys. Lett., 15(8), pp. 260-262 (1969).
- [7] F.T. Smith. Electrically active point defects in cadmium telluride // Metal. Trans., 1(3), pp. 617-621 (1970).
- [8] S.S. Chern, H.R. Vydyanath, F.A. Kroger. The defect structure of CdTe: Hall data // J. Phys. Chem. Solids, 14(1), pp. 33-43 (1975).
- [9] Ю.В. Рудь, К.В. Санин. Влияние давления пара кадмия на электропроводность кристаллов теллурида кадмия при высокой температуре // ФТП, 5, сс. 284-292 (1971).
- [10] С. Медведев, В. Мартынов, С. Кобелева. Собственные точечные дефекты в нелегированном CdTe // *Кристаллография*, **28**, сс. 556-561 (1983).
- [11] M. Wienecke., H. Berger, M. Schenk. Native point defects in CdTe and its stability region // J. Mater. Sci. Eng., 16, pp. 219-222 (1993).
- [12] M. Berding, M. Schiffgaarde, A. Paxton et al. Defects in ZnTe, CdTe and HgTe: total energy calculation // J. Vac. Sci. Technol., 8, pp. 1103-1107 (1990).
- [13] M. Berding. Native defects in CdTe // Phys. Rev. B., 70(12), pp. 8943-8950 (1999).
- [14] Q. Chen, M. Hillert, B. Sundman. Phase equilibria, defect chemistry and semiconducting properties of CdTe(s) thermodynamic modeling // J. Electron. Mater., 27(8), pp. 145-158 (1998).
- [15] R. Brebrick, R. Fang. CdTe II: defect chemistry // J. Phys. Chem. Solids, 57(4), pp. 451-460 (1996).
- [16] П.М. Фочук. Визначення енергетичних параметрів дефектоутворення в CdTe: вплив умов експерименту // Наук. вісник Чернівецького університету. Вил.51. Хімія. сс. 28-35 (1999).
- [17] P. Fochuk, O. Korovyanko, O. Panchuk. High-temperature point defect equilibrium in CdTe modeling // J. Cryst. Growth., 197, pp. 603-606 (1999).

P. Fochuk, O. Panchuk, L. Shcherbak

Dominant Point Defect Nature Specification in CdTe Crystals: Cd Saturation Region

Chernivtsi National University, Chemical Department, 2, Kotziubinskoho Str., Chernivtsi, 58012, Ukraine e-mail: fochuk@chnu.cv.ua, phone: +380 (372) 58-47-45

High-temperature Hall effect measurements for undoped CdTe grown by Bridgman method and THM (Traveling Heater Method) in temperature range of 600-900°C were carried out. It was established that Cd_i^{2+} is the dominant intrinsic donor defect with enthalpy formation of ~2.1 eV. The defect structure modeling for $P_{Cd}=1$ atm have demonstrated satisfactory agreement with experiment.