УДК 541.136.2

ISSN 1729-4428

Б.К. Остафійчук, І.М. Будзуляк, І.М. Гасюк, Р.В. Ільницький Рентгенівські К_{β2,5} емісійні смуги Ті від нанокристалічного діоксиду титану, інтеркальованого іонами літію

Прикарпатський університет імені Василя Стефаника, вул. Шевченка, 57, Івано-Франківськ, ,Україна E-mail: <u>valeriy@pu.if.ua</u> тел: 8-0342 59-60-75

На основі аналізу рентгенівських емісійних спектрів титану від нанодисперсних порошків TiO₂ прослідковано тенденції у перебудові електронної структури катодного матеріалу літієвих джерел живлення у процесі технологічної модифікації та інтеркаляції іонами Li⁺. Виявлено перерозподіл електронної густини у сфері титану та додаткову spd-гібридизацію електронних рівнів у процесі літієвої інтеркаляції. Підтверджено розпад основної рутил-анатазної модифікації при високих ступенях "гостьового" навантаження Li⁺.

Ключові слова: інтеркаляція, діоксид титану, рутил, анатаз, рентгенівські емісійні спектри.

Стаття поступила до редакції 19.01.2004 ; прийнята до друку 12.05.2004.

I. Вступ

Одним із високоперспективних, дешевих та екологічно чистих матеріалів, що використовуються в якості катодного матеріалу у найсучасніших літієвих хімічних джерелах електрорушійної сили [1,2], є нанокристалічний діоксид титану двох модифікацій – рутилу та анатазу [3,4]. Особливості структури, описаної у значному числі робіт, хімічна та термостійкість діоксиду титану як матеріалу катоду забезпечують високі значення накопиченого електричного заряду електрохімічного елемента, достатній рівень анод – катодної різниці потенціалів (~ 3,0 ÷ 3,2 В), можливість використання елементів повторно у випадку заряд – розрядних циклічних процесів. Канальна структура як рутильної, так і анатазної форм TiO₂, поряд із розвинутою поверхнею нанокристалічних порошків, визначає високу ступінь входження іонів Li⁺ у структуру матеріалу-"господаря" при збереженні постійності потенціалу поверхні при стабільно низькому внутрішньому опорі елемента. Проте виражена залежність параметрів гальванічних елементів та термодинамічних властивостей їх електродних матеріалів від ступені "гостьового" навантаження матеріалу катода, а також можлива перспектива модифікації вихідного матеріалу - "господаря" різними методами покращення його для інтеркаляційних властивостей, стабільності i задовільної відтвореності параметрів створює необхідність дослідження електронної структури діоксидів титану як вихідних, так і модифікованих у

технологічному процесі виготовлення електроду та інтеркаляції при роботі елемента.

Теоретичні розрахунки електронної структури таких матеріалів є вочевидь складними і містять велике число припущень та обмежень; у першу чергу розрахунок можна провести тільки для невеликих кластерів без врахування міжкластерної взаємодії [5, 6]. Це в першу чергу пов'язано із розмірними ефектами, впливом розвинутої поверхні, нерівномірним розподілом "гостьових" атомів, що важко врахувати навіть при наявності певних статичних схем розподілу елементів.

Традиційно, у такому випадку вихід із ситуації шукати застосуванні слід потужних У експериментальних методів, чутливих до зміни електронної структури як у валентній зоні, так і на внутрішніх рівнях досліджуваних атомів. У даній роботі розглядається вплив технологічної та інтеркаляційної електрохімічної модифікації на електронну структуру матричних елементів нанокристалічного діоксиду титану на основі дослідження рентгенівських емісійних К_{вль} – смуг титану та їх сателітів.

II. Експеримент

а) Об'єктами дослідження служили порошки нанокристалічного діоксиду титану TiO_2 і діоксид титану з добавкою оксиду алюмінію (90% мас. TiO_2 + + 10% мас. Al_2O_3) з вільною питомою поверхнею 73 ÷ 47 м²/г, отриманні методом пірогенного гідролізу тетрахлориду титану у водневоповітряному факелі при температурі $1300\div1750$ °C. Такий метод забезпечує синтез TiO₂ у вигляді суміші анатазу і рутилу. Нанодисперсний діоксид титану отримують з розмірами частинок $10\div40$ нм. Дані про досліджувані системи представленні у таблиці 1. З метою забезпечення високої провідності катоду порошок переміщувався із ацетиленовою сажею у співвідношенні (8, 8:1). та електрохімічну стійкість анод-катодної пари протягом всього часу роботи гальванічної комірки. Процес інтеркаляції описується рівнянням:

$$TiO_2 + xLi^+ + xe^- = Li_xTiO_2.$$
(1)

Основні характеристики досліджуваних матеріалів приведенні у таблиці 1.

б) Рентгенівські емісійні спектри Ті від досліджуваних матеріалів отримувались у вторинному випромінюванні на довгохвильовому

Таблиця 1

№ зразка	Тип зразка	Характеристика	Ступінь інтеркаляції х	
1	Ti [*]	Металічний	-	
2	${\rm TiO_2}^*$	Не інтеркальований	-	
3	TiO ₂	Не інтеркальований		
4	TiO ₂	Інтеркальований	0,6	
5	TiO ₂	Інтеркальований	3,48	
6	TiO ₂	Інтеркальований	4.0	
7	TiO ₂ +Al ₂ O ₃	Не інтеркальований	-	
8	TiO ₂ +Al ₂ O ₃	Інтеркальований	0,254	

Характеристика зразків і ступінь гостьового навантаження літію

- зразок без провідної добавки (ацетиленової сажи)

Електрохімічна інтеркаляція здійснювалась за трьохелектродною схемою [7]: два електроди електрохімічної комірки – поляризаційний і порівняльний – виготовлялись у вигляді пластин 10×5 мм і товщиною $0,5 \div 0,8$ мм із металічного літію, катодом служив електрод виготовлений із суміші досліджуваного порошку і ацетиленової сажі, напресований на сітку із металічного нікелю такого ж розміру. Струмопровідні провідники комірки – молібденові дротини діаметром 1,1 мм. В якості електроліту використовувався 1М розчин LiBF₄ в γ – бутиролактоні, що забезпечувало одночасно хімічну

рентгенівському спектрометрі ДРС-2М із запаяною рентгенівською трубкою з мідним антикатодом при прискорюючій напрузі 35 кВ і струмі електронної емісії 70 мА. В якості фокусуючого використовувався кристал SiO2 з площиною зрізу (1011), вигнутий за методом Іоганна-Капіци [8]. Фіксувалися К_{в.,}-смуги у відбиванні ІІ-го порядку при фотографічному методі реєстрації. В якості реперних ліній використовувались Кала -смуги нікелю, отримані від нікелевої сітки, що служила провідним тримачем досліджуваного матеріалу. Час

Рис. 1. Фотометрична крива рентгенівського спектру Ті від металічного порошку (а) та результат виділення Ті К_{вле} (б) з інтегрального спектру.

реєстрації спектрів – 42 год. Якість отриманих спектрів контролювалася шляхом досягнення доброї повторюваності форми отриманих при фотометруванні плівок графіків на мікрофотометрі МФ-2 по 5-ти рівновіддалених доріжках. За отриманими усередненими результатами фотометрування будувалися залежності відносної інтенсивності від довжини хвилі.

в) Оскільки у Ті відстань між валентними ррівнями і основним 3р-рівнем є досить незначною, Ті $K_{\beta_{2,5}}$ -смуга розміщена на короткохвильовому "хвості" $K_{\beta_{1,3}}$ -ліній, котра має значно вищу інтенсивність (рис. 1). Процес розділення цих смуг і виділення їх тонкої структури у зв'язку із малою енергетичною відстанню між ними носить досить суб'єктивний характер, що проявляється у відмінностях в кількісних характеристиках спектрів, отриманих різними авторами. Оскільки найбільш інформативною виявляється $K_{\beta_{2,5}}$ -смуга та її сателіти, та її виділення із інтегрального спектру здійснювалось шляхом віднімання інтенсивності $K_{\beta_{1,3}}$ -смуги і реперних ліній, апроксимованих лоренц-гауссівськими кривими при допомозі універсальної спектроскопічної програми UNIVEM (версія 3.0). Такий підхід є у значній мірі формальним, оскільки лінії $K_{\beta_{1,3}}$ є асиметричними

[9], проте його застосування для серії зразків дає змогу не вносити ніяких розрахункових поправок у форму та інтенсивність досліджуваної лінії. Крім того, у методі добре проявляється інтенсивність характерного для титану у окисленому стані довгохвильового сателіту.

III. Результати та обговорення

На рис. 2 показані Ті К_{р2.5} емісійні смуги від металічного титану та досліджуваних зразків,

Рис. 2. Ті К_{β2,5} -(I) та К_β. (II)–рентгенівські емісійні спектри від чистих та інтеркальованих діоксидів титану (позначення згідно таблиці 1).

приведені до однієї енергетичної шкали, нормовані відносно максимуму лінії $K_{\beta_{1,3}}$ та виділенні із інтегрального спектру з поправкою на апаратурну функцію. Таблиця 2 містить відомості про основні параметри спектрів, отриманні розкладом ліній на їх компоненти та знаходження параметрів отриманих компонент.

Форма та положення лінії Ті К_{в25} від чистого металічного титану (крива 1) у межах похибки експерименту добре співставляється із анологічними спектрами, отриманими авторами [9,10]. Згідно [9], найбільш поширеним на сьогоднішній день і найімовірнішим уявленням про механізм виникнення К_{в.}-смуги перехідних металів є положення про існування дипольного p-1s переходу, що відображає розподіл станів р – симетрії у зовнішній енергетичній смузі, яких немає у відповідних вільних атомів, а появою вони зобов'язані утворенню своєю кристалічної гратки у результаті перекривання атомних s-, p- і d-станів. Перехідні елементи першого великого періоду характеризуються великою ступінню гібридизації станів s-, p- і d-симетрії, відповідно форма К_{в25}-смуги відповідає повній кривій, де враховуються стани всіх симетрій у зовнішній енергетичній смузі. Багаторазово описана К_{в2,5} -смуга чистого титану характеризується значною асиметричністю, зумовленою в першу чергу немонолінійним характером її інтегральної форми. Відповідно до перерозподілу заповненості станів у сполуках титану змінюється як енергетичне положення центра ваги лінії, так і її форма та асиметричність.

У оксидах титану, які можуть у стабільній формі містити дві поліморфні модифікації – анатаз та рутил, – спостерігається значна зміна у відносній інтенсивності компонент основної лінії (області А та В графіка) та розходженні їх за енергіями на більшу відстань, ніж у металічному титані. Відмінність спектрів вихідних оксидів від отриманих у літературі ми пояснюємо тим, що у роботі використовувались зразки із вмістом як рутильної, так і анатазної фази, у літературі ж відсутні відомості про фазовий склад досліджуваних зразків.

Особливістю оксидних ліній Ті $K_{\beta 2,5}$ є наявність у їх структурі більш чи менш інтенсивного, але навіть співрозмірного за енергією із основними лініями довгохвильового сателіту (область С), відсутнього у спектрах металічного титану. Показано [10], що киснева нестехіометрія у оксидах при зменшенні вмісту кисню призводить до зміщення сателіту у бік високих енергій і зростання його інтенсивності аж до співрозмірності із основними лініями у спектрі металу. Очевидно, виникнення цього піку слід пов'язувати у першу чергу із зниженням симетрії розподілу густини заряду іону металу і, таким чином, зменшенням зарядової густини у сфері аніона.

Розглянемо особливості перерозподілу інтенсивностей компонент спектру, їх енергетичне

положення та залежність цих параметрів від ступені інтеркаляції досліджуваних зразків.

Рисунок 2 (1-6) ілюструє спектри зразків без вмісту добавок Al₂O₃. Відмінність спектру Ті і вихідного оксиду (2) від описаного в літературі полягає у незначному уширенні лінії та появі між основними лініями та описаним сателітом додаткового малоінтенсивного немоноенергетичного піку із складною структурою, існування якого не залежить від ступені інтеркаляції і відсутнє у зразках без струмопровідної добавки – ацетиленової сажі. Логічно буде пов'язати виникнення цієї смуги із взаємодією мілкодисперсних, хімічно активних частинок вуглецю із високорозвинутою поверхнею матричного елементу діоксиду титану і зміною зарядового стану елементів на поверхні частинок. нанодисперсних Зa рахунок високорозвинутої поверхні вклад поверхневого ефекту у інтегральну інтенсивність спектру стає достатньо суттєвим, що і проявилося у появі нового, зареєстрованого спектрографом електронного переходу. При збільшенні ступеня інтеркаляції, а отже і часу взаємодії зразків із електролітом, інтенсивність піку додаткового незначно зменшується, а сам він зміщується y короткохвильову сторону. Зміщення, можливо, зумовлено інтегральним ефектом "погашування" цієї структури лінією ділянки В, яка одночасно зміщується у бік довгих хвиль. Проте така інтерпретація додаткової лінії потребує додаткової перевірки, одним із способів якої може стати заміна вуглецю іншим елементом, наприклад 3d-перехідним металом і проведення повторних спектральних досліджень з метою виявлення ефектів, що проявляються в інтерметалічних сполуках. рентгенівські спектри яких достатньо добре вивчені.

Зменшення відстанні між основними К_{в, с}-лініями при інтеркаляції і спектральними збереження тенденції до цього ефекту при зростанні відносного числа катіонів "гостьового" елементу Li⁺ свідчить про перерозподіл густини зарядового стану у першу чергу аніонної основи (атомів кисню). У сполуках перехідних металів із ростом валентності К_{ває}-лінія цих металів (за виключенням Fe) зсувається в бік коротких хвиль, тобто тенденція заселеності валентних орбіт Ti правильно передається формою контура К_{вус}-лінії.

незначним Інтеркаляція 3 гостьовим навантаженням (до x = 0.6) приводить ло короткохвильового зсуву основної лінії у порівнянні із чистим оксидом; значення цього зсуву значне (зразки 2 і 3; табл. 2) і виходить за межі похибки експерименту і свідчить про додаткове окислення титану. Цей процес можна пов'язати із відтягуванням літієвими іонними остовами електронної хмари від кисневої підгратки, яка, у свою чергу, взаємодіючи із титаном, спричинює його додаткову іонізацію і асиметричний перерозподіл електронної густини, а отже, додаткову s p d - гібридизацію. На користь такого твердження свідчить і різне зменшення

Рентгенівські К_{в25} емісійні смуги Ті ...

Таблиця 2

Характеристики рентгенівських емісійних спектрів титану від досліджуваних зразків

№ зразка	λ,Kβ _{2,5,} Å	λ,Kβ ["] ,Å	λ,Kβ _{1.3} ,Å	Відстань між максимумами Кβ _{2,5} і Кβ _{1,3} eB	Відстань між максимумами Кβ _{2,5} і К _β ["] , eB	Ширина Ті $K\beta_{2,5}$ – смуги на $\frac{1}{2}h$, eB	
1	2,498		2,5153	31,25		5,14	
2	2,498	2,5055	2,5134	30,98	15,40	5,37	
3	2,498	2,5058	2,5134	30,93	15,31	5,49	
4	2,499	2,5059	2,5143	30,56	12,90	5,93	
5	2,498	2,5045	2,5136	30,14	12,35	6,37	
6	2,499	2,5039	2,5139	29,06	10,40	6,59	
7	2,498	2,5044	2,5148	32,68	12,18	5,48	
8	2,498	2,5042	2,5135	30,43	14,22	5,71	
Похибка	±0,003	±0,0054	$\pm 0,0008$				
*Зміщення Кβ _{2,5} лінії елемента в хімічних сполуках (діоксиду титану) визначалось відносно чистого							

ширини лінії за рахунок зняття виродження, викликаного внутрикристалічною симетрією.

Проте подальший процес інтеркаляції спричиняє довгохвильове зміщення основної лінії на фоні її значного уширення, яке, судячи із несиметричної форми К_{в25}-смуги та існування роздріблених "напливів", викликане нееквівалентними положеннями титану у структурі, сформованій в наслідок інтеркаляції. Довгохвильовий зсув не перевищує положення лінії К_{в, с}чистого діоксиду, тому логічно передбачити існування у структурі неінтеркальованого, чистого діоксиду. Крім того, нееквівалентні положення титану можуть формуватися як за рахунок додаткового доокислення описаного вище у оксидній структурі, так і формування іншої кристалографічної фази, котра спостерігається у виді окремих, слабо виявлених лініях дифрактограм, знятих від цих зразків, та можливість виникнення якої описана у роботах [11,12]. При високих ступенях інтеркаляції розмивається добре локалізований у чистому діоксиді довгохвильовий сателіт, що таким може свідчити на користь виникнення багатофазної системи.

Характер зміни контура К_{в25} при інтеркаляції для зразків, що містять добавку Al₂O₃ принципово не відрізняється від описаного вище. Початкова стадія інтеркаляції відбувається також у межах однієї оксидної фази (рутильної чи анатазної), кожна з яких "витримує" певну ступінь гостьового навантаження без перебудови основної гратки матеріалу "господаря". Добавка аморфного y рентгеноструктурному відношенні Al₂O₃ при синтезі діоксиду сприяє збагаченню зразків значно стабільнішою по відношенню до анафазу рутильною формою TiO₂. Це сприяє можливісті дещо нижчих значень х при інтеркаляції і більш дисперсній формі кривої спектра Ti $K_{\beta_{2,5}}$ і її довгохвильового сателіту. Наявність аморфного Al₂O₃ зменшує площу контакту TiO₂ і ацетиленової сажі, що зумовлює різне значення інтенсивності додаткової лінії, зумовленої такою взаємодією.

IV. Висновки

Розгляд енергетичного положення та форми емісійних Ті $K_{\beta_{2,5}}$ -смуг від діоксиду титану в залежності від ступені інтеркаляції Li⁺ дозволяє якісно оцінити трансформацію електронної структури матеріалу-"господаря" і опосередковано – інтеркалянту, а також виявити азоутворення при електрохімічній інтеркаляції наноструктурного діоксиду титану.

Робота виконана в рамках проекту 1709 УНТЦ.

Остафійчук Б.К. – доктор фізико-математичних наук, професор, завідувач кафедри матеріалознавства і новітніх технологій, проректор з наукової роботи;

Будзуляк І.М. – кандидат фізико-математичних наук, докторант кафедри матеріалознавства і новітніх технологій;

Гасюк І.М. – кандидат фізико-математичних наук, доцент кафедри матеріалознавства і новітніх технологій;

Ільницький Р.В. – молодший науковий співробітник кафедри матеріалознавства і новітніх технологій.

^[1] И.А. Кедринский, В.Е. Дмитриенко, И.И. Грудянов. Литиевые источники тока. // Энергоатомиздат, М., с. 240 (1992).

^[2] Electrochemical Power Sources. Ed. M. Barak. Inst. Elect. Eng. 498 p. (1980).

- [3] Л.В. Дмитриева, Л.С. Воротилова, И.С. Подкорытов, М.Е. Шелянина. Сравнение параметров спектров ЯМР ядер ⁴⁷Ti, ⁴⁹Ti в рутиле и анатазе // ΦTT, 41(7), сс. 1204-1206 (1999).
- [4] Ф.В. Чухрова, Э.М. Бондштедт-Куплетской. *Минералы*. Наука, М., 2(2), сс. 239-287(1965).
- [5] Quantum-Mechanical ab *initio* calculations of the properties of crystalline materials. Lecture Notes in Chemistry / Ed. By C. Pisam. 67. Springer (1966).
- [6] Р.А. Эварестов, Д.Е. Усват, В.П. Смирнов. Полный учет симетрии при построении функций Ваннье: химическая связь в кристаллах MgO и TiO₂. // ФТТ, **45**(11), сс. 1972-1981. (2003).
- [7] І.І. Григорчак. Інтеркаляція: досягнення, проблеми, перспективи // ФХТТ, 2(1), сс. 7-55 (2001).
- [8] М.А. Блохин. Методы рентгеновского исслелования. Физматгид, М., 474 с. (1959).
- [9] В.В. Немошкаленко. Рентгеновская эмиссионная спектроскопия металлов и сплавов. Наукова думка, К. 318 с. (1972).
- [10] И.А. Бритов, М.А. Румш. Исследование энергетической структуры валентной зоны в окислах титана и ванадия по эмиссионным рентгеновским полосам. / Электронная структура переходных металлов и их сплавов. *К.– АН УССР*, сс. 75-87 (1968).
- [11] M.V. Koudriachova, N.M. Harrison, S.W. de Leeuw. Effect of Diffusion on Lithium Intercalation in Titanium Dioxide // Phys. Rev. Lett, 86(7), pp. 1275–1278 (2001).
- [12] M.V. Koudriachova, N.M. Harrison, S.W. de Leeuw. Density-functional simulations of lithium intercalation in rutile // Phys. Rev. Lett., 65, pp. 235-423 1-12 (2002).

B.K. Ostafiychuk, I.M. Budzulyak, I.M. Gasyuk, R.V. Ilnytskyy

X-Ray Photography Emission Bars Ti from Nanocrystall Titania Intercalated by the Lithium Ions

Precarpathion University named after V.Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk, 76000, Ukraine e-mail: <u>valeriv@pu.if.ua</u>, phone: +(0342) 59-60-75

On the basis of X-ray photography emission spectrums analysis of titanium from TiO_2 nanodispersive powders tendency is retraced in reconstruction of cathode material electronic structure of lithium power sources in the process of technological modification and intercalation by the Li⁺ ions. The redistribution of electronic density in a titan sphere and additional spd-hybridization of electronic levels is exposed in the process of lithium intercalation. Destruction of basic rutile-anatase modification is confirmed at the high degrees of Li⁺ "guest" loading.