УДК 535.242

ISSN 1729-4428

Н.А. Ковтун

Дослідження властивостей полікристалічних плівок ZnO, легованих Al, отриманих методом нереактивного магнетронного розпилу

Національний технічний університет «ХПІ» вул. Фрунзе 21, Харків, 61002, Україна E-mail: <u>root@fmeg.kpi.kharkov.ua</u>, <u>nazarko1@ukr.net</u>

Досліджено структурні, електричні та оптичні властивості прозорих шарів ZnO:Al, отриманих методом високочастотного нереактивного магнетронного розпилу. Оптимізованні оптоелектричні властивості плівок ZnO:Al, осаджених при різних значеннях температури підкладки і робочого тиску в вакуумній камері. Встановлено, що при збільшенні тиску від 1 мкбар до 20 мкбар спостерігається збільшення питомого опору у зв'язку із зменшенням концентрації та рухливості основних носіїв заряду, що у свою чергу пов'язано з погіршенням структурної якості отриманих плівок.

Ключові слова: фотоелектричні перетворювачі, широкозонні напівпровідникові "вікна", тонкі плівки, магнетронний розпил, оптичні та електричні властивості, рентгенодифрактометричні дослідження, структура.

Стаття поступила до редакції 01.02.2004; прийнята до друку 20.10.2004.

I. Вступ

Тонкі прозорі провідні полікристалічні плівки ZnO:Al представляють інтерес як широкозонні напівпровідникові "вікна" плівкових y фотоелектричних перетворювачах (ФЕП) сонячної енергії [1-4]. В даний час різними методами, у тому числі і таким високотехнологічним методом, як магнетронне розпилення, отримані плівки ZnO:Al з оптимальними параметрами, що дозволяють використовувати такі шари в конструкціях ФЕП. Але проблема оптимізації електрооптичних властивостей плівок ZnO:Al, отриманих методом магнетронного розпилення при варіюванні технологічних параметрів осадження, все ще залишається актуальною.

У даній представлені результати статті дослідження електрооптичних властивостей плівок ZnO:Al, отриманих при варіюванні таких фізикотехнологічних умов магнетронного розпилення, як робочий тиск у вакуумній камері і температура підкладки, що згідно літературним даним [5-7] найбільш здійснюють істотний вплив на електрооптичні властивості осаджених шарів.

II. Експеримент

Полікристалічні плівки ZnO:Al осаджувалися на підкладки з тонкого скла "Croning" методом високочастотного нереактивного магнетронного RFрозпилення (radio frequency) (рис. 1) [5]. Розпилення проводилось з використанням керамічної мішені ZnO:Al зі змістом Zn – 98 ат. % і Al – 2 ат. %. Вихідний тиск у вакуумній камері складав 8.10⁻⁴ мкбар. Потужність магнетрону була постійною 150 Вт. При проведенні i рівнялась cepiï експериментів змінювався робочий тиск (Р) у камері за рахунок посилення інтенсивності роботи турбомолекулярного Робочий насоса. тиск змінювався у межах 1 мкбар, 5 мкбар 10 мкбар, 15 мкбар, 20 мкбар. Швидкість подачі аргону для створення плазми була постійною і складала 10 см3/с. Температура підкладки (Тs) рівнялась кімнатній температурі (RT) і 150°С. В результаті експериментів були отримані плівки товщиною 300 нм і 1000 нм.

Для ідентифікації кристалічної структури шарів ZnO:Al були проведені рентгеноструктурні дослідження. Вони виконувалися за допомогою рентгенівського дифрактометра у випромінюванні мідного анода. Фокусування здійснювалося по методу Брегга-Брентано (θ-2θ). При цьому по ширині отриманих відображень, визначався розмір області когерентного розсіювання, величина мікродеформацій.

Величина питомого електроопору (р) визначалася чотирьохзондовим методом з лінійним розташуванням контактів. Концентрація (n) і рухливість основних носіїв заряду (µ)

Рис. 1. Схема магнетронного розпилу:

а)- магнетронна система (1), нагрівач (5) з підкладкою (3);

b)- система підкладка (3) - мішень (2) із зоною ерозії (4) і плівкою, що осаджується (6).

розраховувалися на підставі вимірів е.р.с. Холу [9].

Коефіцієнти пропускання (T) і товщина плівок (d) вимірялися в діапазоні довжин хвиль (λ) 300-2000 нм спектрофотометричним двоканальним методом.

III. Результати і обговорення

Перед проведенням експерименту була встановлена залежність швидкості осадження (D) шарів від робочого тиску у вакуумній камері. У даній роботі розглядаються плівки з товщиною 300 нм і 1000 нм, а шари, осаджені при різних значеннях тиску, мають різні товщини, тому що отримані при різних швидкостях осадження. На рис. 2 представлені результати визначення швидкості осадження шарів ZnO:Al, отриманих при температурах підкладки RT і 1500С. Встановлено, що із зменшенням робочого тиску від 20 мкбар до 1 мкбар при незмінному часі осадження збільшується товщина осаджених плівок, що зв'язано із збільшенням швидкості росту в результаті інтенсифікації процесу розпилення мішені при низькому тиску. Збільшення швидкості росту шарів зі зменшенням робочого тиску спостерігається як для плівок, отриманих при кімнатній температурі, так і при температурі підкладки Ts = 150°С. Після встановлення швидкості осадження були отримані шари ZnO:Al товщиною 300 нм і 1000 нм при варіюванні робочого тиску в межах 1 мкбар, 5 мкбар,

10 мкбар, 15 мкбар, 20 мкбар і температурі підкладки 150°С і RT.

Результати дослідження залежності питомого електроопору, концентрації, рухливості основних носіїв заряду і максимального значення коефіцієнта пропускання у видимому діапазоні від температури підкладки і робочого тиску плівок, заданих товщин представлені в таблиці. На рис. З показані графіки електрооптичних параметрів шарів залежності ZnO:Al фізиковід перерахованих вище технологічних параметрів магнетронного розпилення.

Аналіз таблиці показує, що при постійній потужності магнетрона 150 Вт збільшення робочого тиску у вакуумній камері приводить до збільшення питомого електроопору. Так для шарів з товщиною 300 нм, отриманих при Ts = RT, збільшення робочого тиску від 1 мкбар до 20 мкбар приводить до збільшення питомого електроопору від 5,6·10⁻⁴ Ом·см до 21,3·10⁻⁴ Ом·см, що пов'язано із зменшенням п від $13 \cdot 10^{20}$ см⁻³ до $4, 2 \cdot 10^{20}$ см⁻³ і незначним зменшенням рухливості від 8,5 см²/(В·с) до 5,64 см²/(В·с). Для шарів з товщиною 1000 нм, також отриманих при Ts = RT, питомий електроопір збільшується від 3·10⁻⁴ Ом·см до 37,7·10⁻⁴ Ом·см, що викликано зменшенням концентрації основних носіїв заряду від 21·10²⁰ см⁻³ до 9,9·10²⁰ см⁻³ і зменшенням ïx рухливості від 9,9 см²/(В·с) до 1,7 см²/(В·с).

Дослідження властивостей полікристалічних плівок ZnO...

Рис. 2. Графіки залежності швидкості осадження плівок ZnO:Al різної товщини від робочого тиску, отриманих температурах підкладки RT і 150⁰C.

Таблиця

Електричні та оптичні властивості плівок ZnO:Al, отриманих при різних технологічних параметрах магнетронного розпилу

Ts,	P,	ρ, Ом*см	n, cm ⁻³	μ,	Т,	d,
⁰ C	мкбар	·10 ⁻⁴	$\cdot 10^{20}$	$c M^2/B \cdot c$	%	НМ
RT	1	5,6	13	8,5	90,2	300
	5	9	10	7	89,3	
	10	14,4	6	7,2	91,1	
	15	26,5	4,2	5,6	89,5	
	20	21,3	3,8	7,6	89,7	
	1	3	21	9,9	88,1	1000
	5	4,9	19	6,7	86,4	
	10	13,5	16	2,9	88,7	
	15	31,8	10	1,9	90,6	
	20	37,7	9,9	1,7	89,6	
150	1	6,7	9,8	9,4	90,4	300
	5	7,1	9,2	9,5	90	
	10	14,9	5,6	7,4	90,5	
	15	22,5	2,6	10,6	90,8	
	20	20,5	3	10,1	90,9	
	1	3,9	21,3	7,5	87,5	1000
	5	4,4	19,7	7,2	88,5	
	10	7,8	17	4,7	89,4	
	15	20	9,3	3,3	90,1	
	20	25,5	10,2	2,4	89	

Подібні результати спостерігаються і для плівок, отриманих при температурі підкладки 150°С. Збільшення ρ від 3,9·10⁻⁴ Ом·см до 25,5*10⁻⁴ Ом·см для шарів ZnO:Al з товщиною 1000 нм, отриманих при Ts = 150°С, при збільшенні робочого тиску в камері від 1 мкбар до 20 мкбар обумовлено зменшенням п від 21,3·10²⁰ см⁻³ до 10,2·10²⁰ см⁻³ і µ від 7,5 см²/(B·c) до 2,4 см²/(B·c) (див. рис. 3).

Виявлена зміна концентрації основних носіїв

заряду в плівках ZnO:Al може бути обумовлена або перерозподілом атомів Al між електрично активними і електрично неактивними станами, або зміною концентрації електрично активних власних крапкових дефектів, основними з яких у шарах оксиду цинку є вакансії кисню. З літературних даних відомо [10,11], що внесок власних крапкових дефектів типу V₀, Zn_i у плівках оксиду цинку складає лише 5 % від внеску атомів легуючого речовини.

Рис. 3. Графіки залежності електрооптичних властивостей плівок ZnO:Al, отриманих при температурах підкладки RT і 150⁰C від парціального тиску.

Звідси, зміна концентрації основних носіїв заряду в плівках ZnO:Al, що спостерігається експериментально, при зміні фізико-технологічних параметрів магнетронного розпилення (таких як Ts i P) зв'язано з перерозподілом атомів Al між електрично активними і електрично не активними станами і не зв'язано з генерацією електрично активних власних крапкових дефектів n-типу провідності. Очевидно, збільшення робочого тиску у вакуумній камері зменшує ефективність процесу легування алюмінієм шару оксиду цинку в процесі розпилення.

Із збільшенням температури підкладки від RT до 150^{0} C питомий електроопір для плівок ZnO:Al з товщиною 1000 нм зменшується, але для шарів з товщиною 300 нм зміна Ts не приводить до значної переміни величини ρ (див. рис. 3). Більш показовою є залежність для шарів з більшою товщиною.

Зміна концентрації основних носіїв при зміні

робочого тиску у вакуумній камері також підтверджується й оптичними вимірами плівок ZnO:Al. У результаті проведених оптичних досліджень було встановлено, що спектральні залежності коефіцієнта пропускання змінюються при зміні парціального тиску, що також свідчить про зміну концентрації основних носіїв заряду, що і було виявлено дослідженням е.р.с. Холу. На рис. 4 представлені спектральні залежності коефіцієнта пропускання для плівок ZnO:Al різної товщини, отриманих при різних значеннях температури підкладки і при варіюванні робочого тиску. Було показано, що коефіцієнт пропускання шарів ZnO:Al у видимій частині спектру зі збільшенням тиску (рис. 3). збільшується немонотонно Особливо помітне збільшення коефіцієнта пропускання від 86 % до 90 % (при λ = 400-800 нм) при збільшенні парціального тиску в камері для плівок ZnO:Al з товщиною 1000 нм.

Рис. 4. Спектральні залежності коефіцієнта пропускання плівок ZnO:Al a) – для плівок ZnO:Al товщиною 1000 нм; б) – для плівок ZnO:Al, різної товщини, отриманих при температурах підкладки RT і 150°С.

Рентгенодифрактометричні дослідження кристалічної структури плівок ZnO:Al показали, що у всіх зразках формуються текстуровані в напрямку [0001] шари оксиду цинку гексагональної модифікації. На рис. 5 представлені рентгенограми плівок ZnO:Al, отриманих при різних температурах підкладки. У зразках ZnO:Al, отриманих при Ts = RT і 150° C, тиску 5 мкбар на кутах $2\theta = 34,4^{\circ}$, $72,6^{\circ}$ спостерігаються дифракційні піки (0002), (0004), що відповідають фазі ZnO. У зразку, отриманому при температурі 150°С и тиску 20 мкбар, поряд з цими піками на куті $2\theta = 36,2^{\circ}$ виявляється дифракційний пік, що належить площини (1011) фази ZnO. Результати рентгеноструктурних досліджень цілком узгоджуються з результатами електрофізичних ростом досліджень. 3 ступеня структурної досконалості плівок збільшується рухливість носіїв заряду і росте їхня концентрація. Зменшення

робочого тиску у вакуумній камері від 20 мкбар до 1 мкбар для плівок товщиною 1000 нм, приводить до істотного збільшення розмірів областей когерентного розсіювання від 600 Å до 950 Å і незначному зменшенню величини мікродеформації від 0,38·10⁻³ до 0,26·10⁻³.

Збільшення концентрації основних носіїв заряду, що спостерігається у плівок ZnO:Al при зменшенні робочого тиску від 20 мкбар до 1 мкбар, може бути викликано зменшенням ступеня розвиненості зернограничної поверхні плівок. Тому що при зменшенні поверхні зменшується кількість атомів Al на ній, що знаходяться в електрично неактивному стані, а кількість атомів Al, що знаходяться в електрично активному стані в обємі зерна, на позиціях атомів цинку – росте. Зменшення ступеня розвиненості зернограничної поверхні плівок приводить також до збільшення рухливості основних

Рис. 5. Рентгенограми плівок ZnO:Al отриманих у випромінюванні мідного аноду:
а) рентгенограма плівки ZnO:Al, отриманої при Ts = RT і P = 5 мкбар;
b) рентгенограма плівки ZnO:Al, отриманої при Ts = 150°C і P = 5 мкбар;
c) рентгенограма плівки ZnO:Al, отриманої при Ts = 150°C і P = 20 мкбар.

носіїв заряду, що обумовлено зменшенням розсіювання носіїв на границях зерен.

розвиненості зернограничної поверхні плівок.

IV. Висновки

1. Методом магнетронного нереактивного високочастотного розпилення отримані плівки ZnO:Al приладової якості.

2. Проведено комплексне дослідження електричних, оптичних і структурних параметрів отриманих плівок ZnO:Al. Показано, шо **i**3 збільшенням тиску від 1 мкбар до 20 мкбар спостерігається збільшення питомого електроопору плівок у зв'язку зі зменшенням концентрації і рухливості основних носіїв заряду. Зміна температури підкладки від RT до 150°С майже не впливає на оптичні параметри шарів.

3. Показано, що для шарів ZnO:Al, отриманих при варіюванні робочого тиску у вакуумній камері, відбувається зміна кривих спектральної залежності коефіцієнта пропускання плівок, що зв'язана із зміною концентрації основних носіїв, що підтверджується і дослідженнями е.р.с. Холу. Цей ефект може бути викликаний зменшенням ступеня 4. Встановлено, що найбільш оптимальними параметрами володіють плівки, отримані при температурі підкладки 150^{0} С і значенні робочого тиску 10 мкбар. Величина питомого електроопору плівок товщиною 1000 нм складає 7,8·10⁻⁴ Ом·см при прозорості у видимій частині спектру 89 %. Ці параметри дозволяють використовувати такі шари ZnO:Al у якості широкозонних "вікон" при створенні фотоелектричних перетворювачів сонячної енергії.

V. Acknowledgements

The author wish to acknowledge all IPE collaborators, especially to Dr. H.-W. Schock, and Kai Korgassa. This work has was realised thanks to assistance of DAAD organisation.

Ковтун Н.А. – інженер кафедри "Фізичне матеріалознавство для електроніки та геліоенергетики".

- [1] К. Чопра, С. Дас. Тонкопленочные солнечные элементы. Мир, М., 450 с. (1986).
- [2] Т. Вальтер, В.Ю. Рудь, Ю.В. Рудь, Г.В. Шок. Фоточувствительность тонкопленочных солнечных элементов ZnO/CdS/Cu(In,Ga)Se₂ // ФТП, **31**(7), сс. 806-810 (1997).
- [3] D. Schmid, M. Ruckh, H.W. Schock. A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures // Solar Energy Mater. Solar Cells, 41/42, pp. 281-294 (1996).

- [4] L. Stolt, J. Hedsttrom, J. Kessler, M. Ruckh, K.-O. Velthaus, H.W. Schock. ZnO/CdS/CinSe₂ thin-film solar cells with improved performance // Appl. Phys. Lett., 62(6), pp. 597-599 (1993).
- [5] K. Ellmer. Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties // J. Phys. D: Appl. Phys., 33, pp. 17-32 (2000).
- [6] T. Minami, H. Sonohara, S. Takata, I. Fukuda. Low temperature formation of textured ZnO electrodes // J. Vac. Sci. Technol., 13(3), pp. 1053-1057 (1995).
- [7] T. Nakada, T. Mise, T. Kume and A. Kunioka. Superstrate-Type Cu(In,Ga)Se₂ thin film solar cells with ZnO buffer layers // 14th European Photovoltaic Solar Energy Conference and Exhibition, Barselona (Spain), pp. 202-203 (1997).
- [8] N. Balasubramanian and A. Subramanyam. Electrical and optical properties of reactive evaporated indium tin oxide (ITO) films-dependence on substrate temperature and tin concentration // J. Phys. D; Appl. Phys., 22, pp. 206-209 (1989).
- [9] Л.П. Павлов. Методы измерения параметров полупроводниковых материалов. Высш. шк., М., 239 с. (1987).
- [10] P. Kofstad. Nonstoichiometry diffusion and electrical conductivity in binary netal oxides // Interscience. New. York., 2, pp. 1218-1220 (1972).
- [11] B.T. Boyko, G.S. Khrypunov, V.R. Kopach. Electrical properties of transparent polycristalline ZnO:In films deposited by magnetron sputtering // Functional Materials, 5(1), pp. 130-132 (1998).

N.A. Kovtun

Investigation of the Structure and Electrical Properties ZnO Doping Films, Obtained by Reactive Magnetron Sputtering Method

National University "Kharkiv Polytechnic Institute", 21, Frunze Str., Kharkiv, 61002, Ukraine, E-mail: <u>root@fmeg.kpi.kharkov.ua</u>, nazarko1@ukr.net

The investigation of the crystalline structure and electrical properties of the transparent ZnO:Al film, obtained by high-frequency magnetron sputtering method, was carried out. Optoelectrical properties of the transparent ZnO:Al films, which were obtained under different values of the temperature of substrate and working pressure in vacuum camera, were optimized. It is defined, that with increase of the pressure from 1 μ bar to 20 μ bar the specific electric resistance of the films is increasing due to the reduction of concentrations and mobilities of the main carriers of charge.