УДК 661.11.01

ISSN 1729-4428

Я.Я. Коцак, Т.Н. Мельниченко, Я.П. Куценко, П.П. Пуга* Внутрішній тиск, мікротвердість та межа пластичності оксогенідних та оксогалогенідних стекол

Державне підприємство "Міжвідомча лабораторія екологічних проблем і радіаційної безпеки Карпатського регіону", *Інститут електронної фізики НАН Украіни,

вул. Універсистетська, 21, Ужгород, 88017, Украіна, E-mail : <u>mvlep@mvlep.uz.ua</u>

За даними про пружні сталі розраховано максимальний внутрішній тиск оксогенідних і оксогалогенідних стекол р_{іт} та межу пластичності о. Показано, що величина р_{іт} не у всіх стекол збігається з мікротвердістю за Вікерсом Н. Межа плинності (пластичності) о набагато менша за мікротвердість та максимальний внутрішній тиск ріт. Пружні сталі та параметри теорії флуктуаційного вільного об'єму досліджуваних стекол в значній мірі залежать від величини середнього координаційного числа Z_{сp}.

Ключові слова: оксогалогенідні стекла, мікротвердість, межа пластичності, внутрішній тиск, флуктуаційний вільний об'єм.

Стаття поступила до редакції 15.08.2003; прийнята до друку 30.08.2004.

I. Вступ

В попередніх роботах нами було опубліковано дані по дослідженню склування в системах Sb-O-Г(Г-Cl, Br, I) і As-Sb-O, вивченню фізикохімічних і акустооптичних властивостей цих стекол. Методами коливної IK- і КР-спектроскопії сумісно з рентгеноструктурним аналізом встановлена можлива модель структурни і її залежність від складу і ступеня метастабільності [1]. Крім того, для досліджуваних стекол за даними про пружні сталі були обчислені параметри теорії флуктуаційного вільного об'єму [2,3], розглянута нелінійність сил взаємодії частинок в них, а також ангармонізм коливань гратки в рамках концепції вільного об'єму [4].

В даній роботі розглядається сумірність максимального внутрішнього тиску p_{im}, мікротвердості Н та межі пластичності (плинності) о оксогалогенідних і оксогенідних стекол. При розрахунку максимального внутрішнього тиску $p_{im} = p_i(r_m)$, який відповідає граничній деформації міжатомного зв'язку Δr_m , для досліджуваних стекол, застосовано підхід, апробований для кисневмісних стекол [5-7]. Результати обчислень p_{im} порівнюються з відповідними значеннями мікротвердості та межі пластичності (плинності) σ стекол систем Sb-O-Г(Г-Cl, Br, I) та As-Sb-O. Ці системи вибрані з огляду на те, що сполуки, які в них утворюються, характеризуються переважно ковалентним типом зв'язку. Тільки в оксогалогенідних стеклах, з вмістом галогена вищим за 6 ат.%, з'являються потрійні структурні одиниці, що відповідають сполукам

 ${\rm Sb_8O_{11}(C_2)^{VII}}$, для яких характерні змішані іонноковалентні зв'язки. Середнє координаційне число Z_{cp} змінюється від 2,33 до $Z_{cp} = 2,37$ в оксогалогенідних стеклах і рівна ~2,4 – в оксогенідних. Будова стекол на основі стехіометричного ${\rm Sb_2O_3}$ з незначним вмістом галогена подібна до будови скловидного сурм'яного ангідриду. Кожен атом сурми оточений сімома атомами кисню, що зумовлює перевищуючі нормальні валентності координації атомів в склі [1]. Тому цікаво відслідкувати залежність досліджуваних параметрів від хімічного складу (типу структурних одиниць) скла, та порівняти результати з даними для халькогенідів та інших неорганічних стекол.

II. Теоретичні відомості

Внутрішній тиск є пружною реакцією гратки на деформацію усестороннього розтягу або стиску [5,8]. За визначенням він дорівнює похідній по об'єму за незмінної температури $p = (\partial U/\partial V)T$, де величина U(V) складається із енергій зв'язків, які об'єднують атоми в тверде тіло.

За одновісного розтягу твердого тіла внутрішній тиск р_і, котрий намагається повернути тіло в недеформований стан, за абсолютним значенням рівний зовнішньому механічному напруженню

$$p_i = E\left(\frac{\Delta r}{r_o}\right), \qquad (1)$$

де Е – миттєвий повздовжній модуль пружності, $(\Delta r/r_o)$ – відносне подовження міжатомного зв'язку, r_o

Таблиця 1

№	Склад	H·10 ⁻⁸ ,	T _g ,	Z _{cp}	μ	В	Е	γ	γ
п/п	Ат. %	Па	К			·10 ⁻⁸ , Па		(A = 1)	(4)
1	Sb ₃₉ O ₅₈ Cl ₃	39,4	580	2,36	0,166	178,1	357,1	1,74	1,01
2	Sb ₃₉ O ₅₆ Cl ₅	40,3	592	2,34	0,158	177,5	364,0	1,69	0,95
3	Sb ₃₉ O ₅₅ Cl ₆	41,0	595	2,33	0,140	175,8	379,3	1,59	0,82
4	Sb47O43Cl10	37,8	576	2,37	0,142	198,8	426,8	1,60	0,83
5	Sb39O58Br3	27,3	601	2,36	0,185	174,8	329,1	1,89	1,20
6	$\mathrm{Sb}_{39}\mathrm{O}_{56}\mathrm{Br}_5$	27,5	592	2,34	0,178	168,9	326,5	1,83	1,12
7	Sb ₃₉ O ₅₅ Br ₆	29,2	616	2,33	0,187	169,9	319,3	1,90	1,20
8	$Sb_{47}O_{43}Br_{10} \\$	29,2	627	2,37	0,189	171,4	310,8	1,95	1,23
9	Sb ₃₉ O ₅₈ I ₃	19,7	613	2,36	0,199	169,6	306,1	1,99	1,32
10	Sb ₃₉ O ₅₆ I ₅	20,3	609	2,34	0,205	170,0	301,8	2,04	1,38
11	Sb ₃₉ O ₅₅ I ₆	20,7	575	2,33	0,206	169,2	298,7	2,05	1,41
12	$As_{36}Sb_4O_{60}$	35,6	354	2,40	0,291	119,2	149,6	3,09	2,81
13	$As_{32}Sb_8O_{60}$	36,4	358	2,40	0,290	-	168,7	3,08	2,80
14	$As_{24}Sb_{16}O_{60} \\$	37,7	470	2,40	0,312	191,2	267,0	3,08	2,80
15	$As_{24}Sb_{18}O_{58}$	38,0	476	2,42	0,272	222,4	304,1	2,79	2,39
16	$As_8Sb_{32}O_{60}$	40,7	491	2,40	0,303	385,5	455,4	3,31	3,15

Мікротвердість H, температура склування T_g, середнє координаційне число Z_{cp}, пружні модулі (B, E, μ) та параметр Грюнайзена γ стекол в системах Sb-O-Cl (Br,I) та As-Sb-O

- середня рівноважна віддаль між атомами.

З теорії максимального внутрішнього тиску відомо, що відносна гранична деформація міжатомного зв'язку ($\Delta r_m/r_o$) може бути визначена через параметр Грюнайзена γ [5,8]. Якщо закон Гука (1) справедливий до граничної деформації ($\Delta r_m/r_o$) = 1/(6 γ), то максимальний внутрішній тиск твердого тіла

$$p_{im} \cong \frac{1}{6\gamma} E. \tag{2}$$

Існує [6,7] безпосередній зв'язок параметра Грюнайзена γ з коефіцієнтом Пуассона μ і об'ємною часткою флуктуаційного вільного об'єму f_g (f_g = = $(V_f \ / \ V)_{Tg}$, де V_f – флуктуаційний вільний об'єм за Френкелем-Єйрінгом, що складається з N_h об'ємів флуктуаційних мікропорожнин Vh), який заморожується при температурі склування Tg :

$$\gamma = \frac{2\ln(1/f_g)}{9} \cdot \frac{1+\mu}{1-2\mu},$$
 (3)

де $A = 2 \ln(1|f_g)/9$. З врахуванням (3) співвідношення (2) запишеться в вигляді [6] :

$$p_{im} = A - 1 \frac{(1 - 2\mu)}{6(1 + \mu)} E$$
 (4)

Величина A для стекол одного виду стала i близька до одиницi. Коли значення f_g невідоме, коефіцієнт A у розрахунках прирівнюють до одиницi (A \cong 1). В рамках цього наближення максимальний

внутрішній тиск (4) є функцією тільки пружних сталих [6]:

$$p_{\rm im} \cong \frac{(1-2\mu)}{6(1+\mu)}$$
 E. (5)

У такому ж вигляді рівняння для розрахунку р_{іт} отримано і авторами [5,9] шляхом використання потенціалу Mi (W = - Ar - m + B r - n):

$$p_{im} = \frac{1}{mn} E, \qquad (6)$$

та напівемпіричного співвідношення між показниками потенціалу і коефіцієнтом Пуассона µ [10].

В рамках концепції вільного об'єму величина максимального внутрішнього тиску $p_{im} = Eh /Vh$ обчислюється з рівняння [5]:

$$p_{im} = \frac{f_g \cdot \ln(1/f_g)}{3(1-2\mu)} E.$$
 (7)

В роботах [2,11] показано, що для стекол з каркасом, сітка яких утворюється переважно ковалентними зв'язками, виправданий спосіб обчислення частки флуктуаційного вільного об'єму f_g за даними про коефіцієнт Пуассона µ. В цьому випадку вираз (7) співпадає з формулою (5).

В [12] показано, що величина (1/mn) за змістом є критична деформація, за якої тверде тіло втрачає стійкість при зсуві. А максимальний внутрішній тиск р_{іт} (6) за величиною збігається з межею плинності

Таблиця 2

Склад	3	Α	ε _b	$n_{\rm h} \cdot 10^{-26}$,	f_g	E _h ,	$V_{h} \cdot 10^{6}$,	$f_g\!/\gamma_L$
ат. %				м ⁻³		кДж моль	<u>м³</u> моль	
Sb ₃₉ O ₅₈ Cl ₃	0,10	0,58	0,17	12,1	0,073	12,6	3,67	0,042
Sb ₃₉ O ₅₆ Cl ₅	0,10	0,56	0,17	140,0	0,080	12,4	3,47	0,047
Sb ₃₉ O ₅₅ Cl ₆	0,11	0,52	0,16	204,0	0,098	11,5	2,89	0,061
Sb47O43Cl10	0,10	0,52	0,16	230,3	0,095	11,3	2,53	0,059
$Sb_{39}O_{58}Br_3$	0,09	0,64	0,17	72,0	0,058	14,2	4,90	0,031
$Sb_{39}O_{56}Br_5$	0,09	0,96	0,19	84,0	0,064	13,5	4,55	0,035
$\mathrm{Sb}_{39}\mathrm{O}_{55}\mathrm{Br}_{6}$	0,09	0,67	0,18	62,0	0,058	14,6	5,22	0,031
$Sb_{47}O_{43}Br_{10} \\$	0,08	0,67	0,17	35,0	0,041	16,7	7,11	0,021
$Sb_{39}O_{58}I_{3}$	0,08	0,70	0,18	52,1	0,051	15,2	5,93	0,026
$\mathrm{Sb}_{39}\mathrm{O}_{56}\mathrm{I}_5$	0,08	0,69	0,17	45,0	0,047	15,1	6,29	0,023
Sb ₃₉ O ₅₅ I ₆	0,08	0,69	0,17	46,1	0,047	14,6	6,06	0,023
$As_{36}Sb_4O_{60}\\$	0,05	0,91	0,15	7,3	0,017	12,1	14,0	0,006
$As_{32}Sb_8O_{60}\\$	0,05	0,91	0,15	-	-	12,2	-	-
$As_{24}Sb_{16}O_{60} \\$	0,05	0,91	0,15	7,6	0,017	12,2	13,4	0,006
$As_{24}Sb_{18}O_{58}$	0,06	0,86	0,14	9,0	0,012	15,2	8,4	0,004
$As_8Sb_{32}O_{60}$	0,05	0,95	0,14	11,1	0,014	17,5	7,6	0,004
	1					1		

Відносна гранична деформація розриву зв'язку між частинками є, лінійна деформація скла є_b та параметри теорії вільного об'єму для стекол в системах Sb-O-Cl (Br ,I) та As-Sb-O

(пластичності) $\sigma \cong p_{im}$ [13].

Об'ємна пластична деформація за усестороннього розтягу або стиску в три рази більша за лінійну $\begin{pmatrix} V_h \end{pmatrix}$

 $\left(\frac{\mathbf{v}_{h}}{\mathbf{v}}\right) = 3\varepsilon_{b}$, тобто пластична деформація скловидних

твердих тіл є_b обернено пропорційно залежить від величини параметра Грюнайзена [14]:

$$\varepsilon_{\rm b} = \frac{\ln(1/f_{\rm g})}{9\gamma} \tag{8}$$

У процесі пластичної деформації органічних полімерів відбувається неперервна зміна їх структури, яка головним чином, виражається через зростання ступеня ангармонізму міжмолекулярних зв'язків і, як наслідок, послаблення міжмолекулярної взаємодії [6,7,13]. Це можна врахувати взявши до уваги зв'язок параметру Грюнайзена у, який характеризує ангармонізм міжмолекулярних зв'язків, з коефіцієнтом Пуассона μ (4). Межа плинності σ відповідає величині максимального внутрішнього тиску деформованої структури полімера p_b ($\sigma = p_b$), яка значно менша за p_{im} недеформованої структури $(p_b = p_{im} [1 - 2\epsilon_b \gamma] = p_{im} [1 - (-) (2/9) ln (1/f_g)]).$ Для неорганічних стекол за σ приймають мікротвердість за Вікерсом Н. Зменшення р_{іт} до рівня межі плинності $p_h = \sigma$ виражається співвідношенням [6,7,13]:

$$\sigma = p_{im} \left[1 - \frac{2}{9} \ln(1/f_g) \right].$$
 (9)

Нижче наведено результати застосування рівнянь (4), (5), (7) та (9) для оксидних і оксогалогенідних стекол. Необхідні дані про Н, Т_g, Е, µ та параметри теорії вільного об'єму (табл. 1, 2) взято з публікацій [1-4,12,15,16].

III. Обговорення результатів

Як видно з табл. З результати обчислень p_{im} за рівняннями (5) і (7) узгоджуються між собою для оксогенідних і оксогалогенідних стекол. Обчислені значення максимального внутрішнього тиску за даними про коефіцієнт Пуассона μ , модуль пружності Е та частку флуктуаційного вільного об'єму f_g (формула (4)) дещо вищі для оксогалогенідних стекол і менші для оксогенідних стекол за p_{im} , що були оцінені за допомогою співвідношень (5) і (7).

Зниження внутрішнього тиску p_{im} до рівня межі пластичності $p_b = \sigma$ в оксогалогенідних стеклах не таке значне, як в аморфних полімерах ($p_{im}/\sigma = 5-7$ раз). Максимальний внутрішній тиск падає

Таблиця 3

17 V ·	· · · ·	•		• т	
Максимальний внутрі	шний тиск р та межа	$\Pi \Pi A CT H H H O CT I \sigma CT e K O I B C$	истемах Sh_O_CLER	r I	TA AS-Sh-()
makerimanbilinin bily ipi	imminini mercipin na merca	influe in moeth o crekon b c	nereman be o cr (b	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 1 1 1 5 5 0 O

Склал	p_{im}/T_g	H/T_g	\mathbf{p}_{im}	\mathbf{p}_{im}	\mathbf{p}_{im}	σ	p _{im} /H	n/σ
			(7)	(5)	(4)		Pini	PIII
ат. %	10 ⁷ , Па/К			10				
Sb ₃₉ O ₅₈ Cl ₃	0,59	0,68	34,2	34,2	58,9	14,4	0,87	2,4
Sb ₃₉ O ₅₆ Cl ₅	0,61	0,68	35,8	35,8	63,9	15,8	0,89	2,3
Sb ₃₉ O ₅₅ Cl ₆	0,67	0,69	39,9	39,9	77,1	19,2	0,97	2,1
Sb47O43Cl10	0,77	0,65	44,5	44,5	85,7	21,4	1,18	2,1
Sb39O58Br3	0,48	0,45	29,0	29,0	45,7	10,4	1,06	2,8
Sb39O56Br5	0,50	0,46	29,7	29,7	48,6	1,2	1,08	2,8
Sb ₃₉ O ₅₅ Br ₆	0,46	0,47	28,0	28,0	44,3	9,2	0,96	3,0
$Sb_{47}O_{43}Br_{10} \\$	0,38	0,47	23,5	23,5	42,1	7,8	0,80	3,0
Sb ₃₉ O ₅₈ I ₃	0,42	0,33	25,6	25,6	38,6	7,7	1,3	3,2
Sb ₃₉ O ₅₆ I ₅	0,40	0,33	24,6	24,6	36,4	7,6	1,21	3,2
Sb39O55I6	0,42	0,36	24,3	24,3	35,,3	7,5	1,17	3,2
$As_{36}Sb_4O_{60}$	0,49	1,00	17,4	17,0	8,9	1,6	0,49	10,8
$As_{32}Sb_8O_{60}$	0,51	1,02	18,4	18,4	10,0	1,7	0,51	10,8
$As_{24}Sb_{16}O_{60}$	0,44	0,80	20,6	20,6	15,9	1,8	0,55	11,4
$As_{24}Sb_{18}O_{58}$	0,65	0,80	31,0	31,0	21,2	4,3	0,82	7,0
$As_8Sb_{32}O_{60}$	0,69	0,83	33,9	33,9	24,1	1,7	0,83	9,0

приблизно в 2-3 рази. Величина р_{іт}/о для оксогенідів більша, ніж для аморфних полімерів. Її значення коливається в межах 9-11 (табл. 3).

ного внутрішнього тиску р_{іт} та мікротвердості Н стекол досліджуваних систем. Значення величини р_{іт}, які були обчислені з рівняння (5), для оксогалогенідних стекол в межах розкиду близькі до

На рис. 1 наведено співвідношення максималь-

Рис. 1. Корелляція між максимальним внутрішнім тиском р_{іт} і мікротвердістю Н оксогенідних та оксогалогенідних стекол. Номери точок відповідають номерам стекол в таблиці 1. 1 – Sb₃₉O₅₈Cl₃; 2 – Sb₃₉O₅₆Cl₅; 3 – Sb₃₉O₅₅Cl₆; 4 – Sb₄₇O₄₃Cl₁₀; 5 – Sb₃₉O₅₈Br₃; 9 – Sb₃₉O₅₈I₃; 10 – Sb₃₉O₅₆I₅; 11 – Sb₃₉O₅₅I₆; 12 – As₃₆Sb₄O₆₀; 13 – As₃₂Sb₈O₆₀; 14 – As₂₄Sb₁₆O₆₀; 15 – As₂₄Sb₁₈O₅₈; 16 – As₈Sb₃₂O₆₀.

їх мікротвердості ($p_{im} \cong H$). Для оксогенідних стекол відношення p_{im}/H (табл. 3) далеко менше за одиницю. Лінія, яка проведена на рис. 1 відповідає прямій з нахилом $p_{im}/H = 1$.

Величина внутрішнього тиску визначається потенціальним полем, що створюється найближчим оточенням атомів (ближнім порядком), тому р_{іт} чутливе до структурних змін і тісно пов'язане з властивостями твердих тіл, які зумовлюються міжатомною взаємодією наприклад, для досліджуваних стекол спостерігається лінійна кореляція між р_{іт}, H i T_g (рис. 2 і 3).

Відношення H/T_g у оксогалогенідних системах Sb-O-C^{VII} (Cl, Br, I) змінюється від 0,38·10⁷ Па/К до $0,77 \cdot 10^7$ Па/К, а в системі Sb-As-O – від $0,44 \cdot 10^7$ Па/К до 0,69·10⁷ Па/К. Ці значення Н/Т_д, обчислені із експериментальних даних про Н Tg i оксогалогенідних стекол, добре узгоджуються з обчислень результатами співвідношення $p_{im}/T_g = Rln(1/f_g)/V_h$ і дещо гірше – для стекол оксогенідної системи (табл. 3). Отримані значення H/T_g потрапляють в інтервал значень між значеннями, які характерні для лінійних структур (0,10-0,25 \cdot 10⁷ Па/К), і величинами H/T_g для стекол з просторово-розгалуженою структурою (0, 50 - $0,70\cdot10^7$ Па/К) [5].

Межа пластичності (плинності) о, яка була обчислена із формули (9), не співпадає з мікротвердістю Н досліджуваних стекол (табл. 1, 3). Розбіжність цих величин зростає із збільшенням жорсткості сітки скла. Якщо в оксохлоридних стеклах σ складає приблизно третину величини мікротвердості Н, то для стекол систем Sb-O-Br(I) і Sb-As-O о більша за половину Н. Причиною такої розбіжності, можливо, € послаблення міжмолекулярних зв'язків У процесі пластичної деформації. Оцінка σ із формули (9) відноситься до недеформованої структури, а експериментальні дані - до деформованої структури.

Якщо в формулі (9) врахувати, що $p_{im} = E_h/V_h = RT_g \ln(1/f_g)/V_h$, то стане явною кореляція між межею плинності (пластичності) σ і температурою склування T_g [13]:

$$\sigma = \frac{CR}{V_{\rm h}} T_{\rm g}, \qquad (10)$$

де С – коефіцієнт, який залежить тільки від частки флуктуаційного вільного об'єму f_g, відповідно, є практично сталою величиною для стекол з подібною структурою. Як видно з рис. 3, приведена залежність між межею плинності σ і температурою склування T_g досліджуваних стекол є лінійною в межах однієї системи.

Цікаво зазначити, що цей фактор не відіграє важливої ролі в неорганічних кисневмісних стеклах, де пластична деформація пов'язана головним чином з природою іонних зв'язків [13]. На відміну від оксидних багатокомпонентних стекол в оксогалогенідах сурми з малим вмістом галогена (до 5%) вклад центральних сил зовсім незначний [17]. За більшого вмісту галогена (6 ÷ 13%) в стеклах реалізуються хімічні зв'язки, які характерні для потрійних оксогалогенідів, тобто відбувається перехід від переважно ковалентної структури скловидного Sb₂O₃ до змішаних іонно-ковалентих зв'язків, що є характерними для сполук оксогалогенідів сурми (Sb₈O₁₁C₂^{VII}). Це видно на всіх залежностях (див. рис. 1-3). Точки під номерами 4 (система Sb-O-Cl) і 8 (система Sb-O-Br) не лягають на відповідні лінії залежностей H, р_{іт}, σ від температури склування T_g.

Пластична деформація є досліджуваних стекол дещо вища (табл. 2) за єь скловидних полімерів $(\varepsilon_b \cong 0, 1 [7])$. Крім того, граничне подовження міжатомних зв'язків є у оксогалогенідних стеклах змінюється в залежності від складу від 0,08 до 0,11 і рівне 0,05 в стеклах системи Sb-As-O. Граничне подовження міжатомних зв'язків є оксогалогенідних та оксогенідних стекол близьке до граничного подовження міжатомних зв'язків в аморфних полімерах (є ≅ 0,1 [5]) та низькокоординованих халькогенідах [11], в той час, як значення є у стеклах системи Cd-As ($\varepsilon = 0,22$) [16] близькі до ε для металів, іонних кристалів та лужно-силікатних стекол (є ≈ 0,2 [5]). Виходячи з наявних та літературних [18] даних це можна пояснити тим, що параметр у в цих матеріалах однаковий і відображає в одному випадку ангармонізм коливання іонної підгратки (в лужно-силікатних стеклах $\gamma \cong 2$) [5,18], а в іншому (в аморфних полімерах γ ≅ 4) – з ангармонізмом міжмолекулярних зв'язків. Отже, критичні деформації є_b(у) залежать від хімічної природи міжатомних і міжмолекулярних зв'язків. Для одного класу (структурного типу) стекол вона є величиною сталою, що і спостерігається в нашому випадку $\varepsilon_b = f(\varepsilon)$: в халькогенідних, оксогенідних і оксогалогенідних, з малим вмістом галогена, стеклах, сітка яких утворюється переважно за рахунок ковалентних зв'язків, близьке ЛО $\varepsilon_{\rm b} \cong 0, 1 \cdot (\varepsilon_{\rm b} \cong 0, 14 \div 0, 18),$ перенапружених а в стеклах системи Cd-As [16] є_b рівне 0,7.

Сполуки, які утворюються в халькогенідних, оксогенідних, оксогалогенідних системах та системі Cd-As, характеризуються переважно ковалентним типом зв'язку [1,16,19]. Середнє координаційне число Z_{cp} , у стеклах системи Cd-As ($Z_{cp} = 4$) значно перевищує середнє координаційне число двокомпонентних халькогенідів ($Z_{cp} = 2,1 \div 2,4$) і досліджуваних нами оксогенідних ($Z_{cp} = 2,4$) та оксогалогенідних ($Z_{cp} = 2,3 \div 2,4$), але близьке до середнього координаційного числа потрійних сплавів систем Ge-As(Sb)-S ($2,1 \le Z_{cp} \le 4$).

Перехід від скловидного Sb_2O_3 до стекол потрійних складів порушує неперервність скловидної сітки. Це проявляється в концентраційній залежності всіх пружних модулів. Монотонний характер концентраційних залежностей пружних властивостей стекол свідчить про відсутність різких якісних структурних перетворень і вказує на поступову зміну структури стекол. Незначне зменшення модуля пружності при переході від стекол, що містять хлор,

Рис. 2. Кореляція між мікротвердістю H і температурою склування T_g оксогенідних і оксогалогенідних стекол. Номери точок відповідають номерам стекол в таблиці 1.

Рис. 3. Корелляція між максимальним внутрішнім тиском p_{im} , межею пластичності σ і температурою склування T_g . Номери точок відповідають номерам стекол в таблиці 1.

до бром- і йодовмісних свідчить про більшу розпушуючу дію іонів йоду і брому в порівнянні з хлором (радіуси іонів хлору, брому і йоду рівні відповідно 1,81, 1,96, 2,2 Å [20]).

Дослідження залежності модуля Юнга Е та коефіцієнта Пуассона μ від складу стекол Sb-O-C^{VII} (Cl, Br, I) показали, що, подібно до кварцового скла $(\mu = 0, 17)$, низький коефіцієнт μ відповідає стеклам з зв'язністю скловидного найбільшою каркаса оксихлоридів сурми [1,15], а найбільший коефіцієнт Пуассона и – стеклам оксойодидів сурми, в яких структура розпушена дією іонів йоду. Зміна сурми на миш'як в системі Sb-As-О призводить до зменшення пружних модулів Е, В і µ (табл. 1). Зменшення значень пружних параметрів, очевидно, пов'язано з заміною атомів сурми з більшою атомною масою на легші атоми миш'яку. При цьому змінюються тип і міцність хімічних зв'язків, степінь зв'язності структури стекол, а також густина упакування та координаційне число атомів, що його складають [1].

Розглянемо взаємозв'язок між часткою флуктуаційного вільного об'єму f_g і гратковим параметром Грюнайзена γ_L .

На рис. 2 наведена залежність f_g від γ_L для халькогенідних, оксогенідних, оксогалогенідних стекол та стекол системи Cd-As, сітка яких утворюється в основному ковалентними зв'язками, а також багатокомпонентних силікатних стекол і полімерів. Як видно, залежність f_g від γ_L лінійна для полімерів (а) і ще для двох груп кисневмісних стекол (силікатні стекла з сітчастою структурою (с) і лужноборатні і деякі багатокомпонентні технічні стекла (b)) [5]. Поблизу прямої залежності f_g від γ_L силікатних стекол з

системи Cd-As (точки 16-18). Досліджувані нами оксо- і оксогалогеніди, потрійні халькогенідні стекла разом з низькокоординованими халькогенідами [21], також характеризуються лінійною залежністю частки флуктуаційного вільного об'єму fg від параметра Грюнайзена у_L в межах однієї системи. При цьому кут нахилу залежності fg(үL) збільшується з ростом просторової розгалуженості зв'язків (координації). В той час коли у лінійних низькокоординованих халькогенідів величина fg коливається в інтервалі 0,004-0,025, а величина f_g/γ_L змінюється від 0,001 до 0,011, для висококординованих стекол потрійної халькогенідної системи і оксогалогенідів, в яких fg коливається в межах 0,030-0,070, відношення fg/у_L в кілька разів більше. Значення цього відношення для стекол оксогалогенідів в межах однієї системи змінюється мало, але при переході від оксохлоридів $(f_g/\gamma_L = 0.06-0.04)$ до оксойодидів $(f_g/\gamma_L = 0.02-0.03)$ зменшується приблизно в два рази (табл. 2). З всього вище викладеного випливає, що поряд з ангармонізмом величина fg залежить і від інших факторів, в нашому випадку від середнього координаційного числа Z_{cp}, яке є важливою кількісною характеристикою ступеня зв'язності структурно-хімічного каркасу невпорядкованих матеріалів [20]. Структура середнього порядку (кілька міжатомних віддалей) халькогенідних стекол подвійних і потрійних систем змінюється від ланцюжкової ло шаруватої i лалі ло просторовозв'язаної, тобто відбувається перехід від низькорозмірного до тримірного каркасу. Такий перехід (топологічний) в халькогенідних стеклах спостерігається $Z_c = 2, 4-2, 5$ [17] при 1 фізичних супроводжується різкою зміною

властивостей, в тому числі і параметрів теорії флуктуаційного вільного об'єму [21].

Якщо для стекол Cd-As f_g і γ змінюються симбатно із зміною складу, то для оксогалогенідних і халькогенідних стекол спостерігається інша картина. Величина f_g зростає із збільшенням жорсткості, а γ спадає (табл. 1, 2). Це, очевидно, можна пояснити своєрідністю будови каркасу сітки скла: в халькогенідних і оксогалогенідних стеклах сітка скла утворюється переважно ковалентними зв'язками [22] і не спотворюється модифікуючим додатком катіонів, як це має місце в силікатних стеклах [5] і стеклах системи Cd-As [16].

Відхилення частки флуктуаційного об'єму fg $(f_g = V_h n_h)$, який заморожується при T_g , від сталого значення може бути зумовлене зміною або величини об'єму мікропорожнини V_h, або концентрації "дірок" n_h [13]. Аналіз отриманих результатів показує, що ріст fg супроводжується зменшенням коефіцієнта Пуассона µ, граткового параметра Грюнайзена γ, об'єму мікропорожнини V_h і збільшенням n_h (табл. 1, параметрів 2). Зміна самих в окремих оксогалогенідних і оксогенідних системах незначна. Слід зазначити, що заміна миш'яку на германій у стеклах халькогенідної системи призводить до зміни V_h і n_h у кілька разів, тоді як у стеклах системи Cd-As V_h і n_h практично не залежить від складу [21]. Ці результати узгоджуються результатами 3 дослідження системи Ge-As-S в роботі [17], де показано, що в стеклах цієї системи структура некристалічних матеріалів із значенням середньої координації Z_{ср} ≤ Z_с характеризуються наявністю значної кількості областей із зниженою жорсткістю (великою густиною структурних дефектів), а при Z_{cp} ≥ Z_c матеріали побудовані в основному із "жорстких областей", та з одним із висновків моделі "м'яких" конфігурацій [23] про незначну роль м'яких конфігурацій у некристалічних матеріалах з $Z_{cp} = 4$.

Саме у цих, так званих м'яких конфігураціях, відбуваються локальні деформації квазігратки, що, згідно з [7], зв'язані з утворенням флуктуаційних мікропорожнин і саме в таких "м'яких" мікрообластях ангармонізм коливань має бути виражений сильніше, ніж в нормальній сітці або ланцюжку сильних зв'язків. Що і спостерігається у стеклах досліджуваних систем: значення параметра Грюнайзена γ менші ніж у стеклах з малим Z_{cp} (системи As-S (Se) [11]) і більші, ніж у стеклах системи Cd-As, де $Z_{cp} = 4$ [16] (табл. 1).

IV. Висновки

Отже, максимальний внутрішній тиск p_{im} стекол в системах Sb-O-Cl (Br, I) та As-Sb- О тільки у першому наближенні збігається з їх мікротвердістю H. Межа пластичності σ досліджуваних стекол менша за мікротвердість H і за максимальний внутрішній тиск p_{im} . Величина відношення p_{im}/σ для оксогалогенідних стекол коливається в межах 2-3, а для оксогенідів p_{im} більше за межу пластичності σ приблизно в одинадцять раз.

Так як максимальний внутрішній тиск р_{іт} досліджуваних стекол в першому наближенні співпадає з їхньою мікротвердістю H, то є можливість на основі даних про пружні сталі цілком задовільно оцінювати мікротвердість H стекол, сітка яких утворюється переважно ковалентними зв'язками.

Прослідковується певний зв'язок пружних сталих та параметрів теорії флуктуаційного вільного об'єму з величиною середнього координаційного числа Z_{cp} та характером хімічного зв'язку в склі. Отримані результати узгоджуються з даними досліджень для інших стекол.

- [1] Я.П. Куценко. Метастабильные фазовые равновесия и стеклообразование в оксигалогенидных системах. Киев. УМК ВО, 67 с. (1992).
- [2] Т.Н. Мельниченко, Я.П. Куценко, В.И. Феделеш, И.М. Юркин, Т.Д. Мельниченко. Связь температуры стеклования и коэффициента теплового расширения с коэффициентом Пуассона некоторых стекол в сисемах А^V-B^{VI}-C^{VII} // Физ. и хим. стекла, **27**(4), сс. 449-458 (2001).
- [3] Т.Н. Мельниченко, Т.Д. Мельниченко, Я.Я. Коцак, Я.П. Куценко, П.П. Пуга. Параметри теорії вільного об'єму стекол з тригональною локальною координацією // Науковий вісник Ужгородського університету. С. Фізика, В. 10 (2001).
- [4] Т.Н. Мельниченко, И.М. Юркин, В.И. Феделеш, Я.Я. Коцак, Я.П. Куценко, П.П. Пуга. Ангармонизм колебаний квазирешетки в стеклах систем As(Sb)-O-I (Br, Cl) в рамках модели флуктуационных "дырок" // Физ. и хим. стекла, 28(6), сс. 526-536 (2002).
- [5] Д.С. Сандитов, Г.М. Бартенев. Физические свойства неупорядоченных структур. Наука, Новосибирск (1982).
- [6] Д.С. Сандитов, Г.В. Козлов. Ангармонизм межатомных и межмолекулярных связей и физикомеханические свойства полимерных стекол // Физ. и хим. стекла, 21(6), сс. 549-578 (1995).
- [7] Д.С. Сандитов, С.Ш. Сангадиев. О внутреннем давлении и микротвердости неорганических стекол // Физ. и хим. стекла, **24**(6), сс. 741-751 (1998).

- [8] А.И. Бурнштейн. Молекулярная физика. Наука, Новосибирск (1986).
- [9] Д.С. Сандитов. О микротвердости и температуре стеклования неорганических стекол // Физ. и хим. стекла, **3**(1), сс. 14-9 (1977).
- [10] С.В. Немилов. Взаимосвязь между скоростью распространения звука, массой и энергией химического взаимодействия // ДАН СССР, 181(6), сс. 1427-1429 (1968).
- [11] Т.Н. Мельниченко, И.М. Юркин, В.И. Феделеш, Т.Д. Мельниченко. Ангармонизм колебаний и параметр Грюнайзена халькогенидных стекол Ge-As-S в рамках концепции свободного объема // Физ. и хим. стекла, **26**(5), сс. 569-577 (2000).
- [12] В.Б. Лазарев, А.С. Баланкин, А.Д. Изотов, А.А. Кожушко. Структурная устойчивость и динамическая прочность неорганическких материалов. Наука. Москва (1975).
- [13] Д.С. Сандитов, Б.Ш. Сангадиев. Новый подход к интерпретации флуктуационого свободного объема аморфных полимеров и стекол // Высокомолекулярные соединения, Серия А. 22(6), сс. 68-93 (1996).
- [14] Д.С. Сандитов. Ангармонизм колебаний квазирешетки и модель флуктуационных дырок // Физ. и хим. стекла, 17(4), сс. 535-543 (1991).
- [15] Т.Н. Мельниченко. Жесткость сетки связей в сложных стеклообразных полупроводниках систем A^V-B^{VI}-C^{VII} // Неорган. Материалы, 34(2), сс. 230-233 (1998).
- [16] О.В. Петрушова, Т.Н. Мельниченко. Акустооптические и упругие свойства стекол в системе кадмиймышьяк // Неорган. Материалы, **33**(3), сс. 280-279 (1997).
- [17] И.М. Юркин. Упругие и фотоупругие свойства некристаллических материалов в системах Ge_xAs(Sb)_yS_{1-x-y} Автореф. канд. дис. Ужгород, 16 с. (1990).
- [18] Д.С. Сандитов, Г.В. Козлов, Б.Д. Сандитов. Дырочно-кластерная модель пластической деформации стеклообразных твердых тел // Физ. и хим. стекла, 22(6), сс. 683-693 (1996).
- [19] Д.И. Циуляну, Н.А. Гуменюк. Структуро-химические особенности и оптические свойства стекол, обогащенных серой, в системе As-S-Ge // *Неорган. Материалы*, 29(5), сс. 689-692 (1993).
- [20] Г.Б. Бокий. Кристаллохимия. М.: Наука. 400 с. (1971).
- [21] Т.Д. Мельниченко, В.М. Різак, Т.Н. Мельниченко. Залежність величини параметрів теорії вільного об'єму від перенапруженості хімічних зв'язків у скловидних халькогенідах // Науковий вісник Ужгородського університету, Серія Фізика. В. 10, сс. 102-106 (2001).
- [22] С.В. Немилов. Исследование вязкости стекол системы селен-мышьяк // Журн. прикл. химии, 36(4), сс. 977-981 (1963).
- [23] М.И. Клингер. Аномальные динамические низкотемпературные и электронные свойства стекол // Физ. и хим. стекла, 15(3), сс. 372-396 (1989).

Ya.Ya. Kotsak, T.M. Melnichenko, Ya.P. Kutsenko, P.P. Puha*

Internal Pressure, Microhardness and Fluidity Limit in the Chalcogenide Glasses

State enterprise "Inter-departmental laboratory of ecological problems and radiation security of Carpathian region", *Institute of Elektron Physics National Academy of sciences of Ukraine, 21, Universitetska Str., Uzhgorod, 88000, Ukraine

E-maile: mvlep@mvlep.uz.ua

Through the data of elastic constants maximal internal pressure p_{im} is calculated for chalcogenide glasses and fluidity limit σ . It was shown, that value of p_{im} not corelates with microhardness H after Vikkers in all of glasses. Fluidity (plastic) limit σ is more little than microhardness and maximal internal pressure p_{im} .

Elastic constants and fluctuation free volume parameters in observed glasses largely depend on mean coordination number Z_{cp} .