УДК 535.37

ISSN 1729-4428

В.Б. Залесский¹, Т.Р. Леонова¹, О.В. Гончарова², И.А. Викторов³, В.Ф. Гременок³, Е.П. Зарецкая³

Получение тонких пленок оксида цинка методом реактивного магнетронного распыления и исследование их электрических и оптических характеристик

¹Институт электроники НАН Беларуси, 220090, Минск, Логойский тракт,22; E-mail: <u>Zalesski@inel.bas-net.by</u> ²Институт молекулярной и атомной физики НАН Беларуси, 220072, Минск, просп. Ф. Скорины, 70; E-mail: <u>Olga.Goncharoya@imaph.bas-net.by</u>

³Институт физики твердого тела и полупроводников НАН Беларуси, 220072, Минск, ул. П. Бровки, 17; E-mail: <u>gremenok@ifttp.bas-net.by</u>

Разработана технология получения нелегированных кристаллических пленок оксида цинка, обеспечивающая возможность целенаправленного изменения их электрического сопротивления в пределах р $= 3 \times 10^{-4} - 1 \times 10^{7}$ Ом-см. Изучена взаимосвязь электрических характеристик ZnO-слоев с параметрами процесса их нанесения и определены условия формирования высокоомных i-ZnO- и низкоомных n-ZnO-пленок с заданными значениями электрического сопротивления. Установлено, что доминирующим фактором, определяющим величину проводимости пленок ZnO является изменение концентрации свободных носителей, контролируемое кислородными вакансиями. С целью выбора оптимальных режимов формирования высокопрозрачных покрытий с заданной величиной проводимости изучены особенности микроструктуры и спектральных свойств (спектров краевого поглощения и пропускания в области прозрачности) n-ZnO-пленок, осажденных специальными методами реактивного магнетронного распыления цинковой мишени в среде аргона с кислородом (10% Ar, 90% O₂) при давлении 5×10⁻³ мм. рт. ст. Показано, что разработанный метод дискретного формирования ZnO-пленок на аморфных подложках обеспечивает изготовление кристаллических структур стехиометрического состава с высокой плотностью упаковки и пространственной ориентацией кристаллитов в направлении [002]. Установлено, что даже в случае n-ZnOпленок с $\rho = 3 \times 10^{-3}$ Ом см особенности микроструктуры обусловливают высокую величину пропускания покрытий. Показана возможность формирования двухслойных структур n-ZnO/i-ZnO, перспективных для снижения себестоимости солнечных элементов при их серийном производстве.

Ключевые слова: оксид цинка, реактивное магнетронное распыление, цинковая мишень, среда аргона с кислородом, электрическое сопротивление, кристаллические ориентированные пленки, высокопрозрачные электрические контакты и буфферные слои, тонкопленочные солнечные элементы.

Стаття поступила до редакції 19.09.2004; прийнята до друку 24.11.2004.

Введение

В связи с разработкой миниатюрных источников (лазерных и люминесцентных), детекторов и преобразователей излучения видимого диапазона длин волн возрос интерес к широкозонным кристаллическим средам с высокой концентрацией термо-, фото- и радиационно стабильных оптически активных дефектов (собственных и примесных), обеспечивающих возможность прогнозируемого изменения физических (оптических, электрических) параметров среды, а также её интенсивное свечение при малых объемах и низкомощностных источниках накачки.

В последнее время отмечено возобновление интереса к исследованию свойств структур на основе ZnO-пленочных покрытий, обусловленное их возможным применением в том числе в качестве высокопрозрачных электрических контактов и буфферных слоев в тонкопленочных солнечных элементах на основе халькоперитных поглотителей (см., например [1-4] и рис. 1), а также коротковолновых полупроводниковых лиодных излучателей [5]. Интересно также применение р/п-ZnO-структур для разработки тонкопленочных излучателей и поглотителей, при формировании между p/n-ZnO-слоями, или в их объеме

полупроводниковых нанокристаллов соединений A₂B₆ [6].

Рис. 1. Конструкция солнечного элемента, разрабатываемого в рамках проекта МНТЦ В-542 с поглощающим фотовольтаическим слоем на основе халькоперитных соединений (например, CuInSe₂ и Cu(In,Ga)Se₂)

Оксид цинка – один из перспективных широкозонных материалов, характеризующийся возможностью достижения высоких концентраций собственных дефектов: кислородных вакансий и междуузельных атомов цинка, сверхстехиометрического кислорода (вакансий цинка, V_{Zn}), обеспечивающих возможность изменения оптических свойств, проводимости среды и интенсивное свечение в "зеленой", а также люминесценцию в "красной" области спектра [7-10]. Таким образом, развитие технологии получения кристаллических пленочных р/n-ZnO-структур с варьируемой концентрацией собственных дефектов является актуальной задачей при разработке ряда интегрируемых твердотельных оптоэлектронных устройств с прогнозируемыми оптическими и проводящими свойствами. Повышенный интерес к неэпитаксиальным ZnO-пленочным структурам связан также с возможностью их использования в тонкопленочных солнечных элементах на основе соединений CuInSe₂ и Cu(In,Ga)Se₂ в качестве прозрачных проводящих и буферных слоев [1-4].

В противоположность разработанным методам наращивания эпитаксиального ZnO-слоев на ориентирующих кристаллических подложках, технология реактивного магнетронного распыления представляет собой относительно простой, дешевый и высоко-контролируемый метод для осаждения на прозрачных в широком спектральном диапазоне стеклянных подложках кристаллических ZnOпленочных покрытий высокого оптического качества. Авторами данной работы предпринято исследование ключевых параметров, оказывающих влияние на формирование высокоориентированных n-ZnO-пленок заданными значениями с электрического сопротивления.

С целью изучения условий формирования методами реактивного магнетронного распыления высоко прозрачных специально нелегированных высоко- и низкоомных пленок ZnO для солнечных элементов и разработки щадящих режимов нанесения буферных ZnO-слоев, не оказывающих деструктирующего воздействия на поверхность поглощающего слоя на основе соединений CuInSe₂ и Cu(In,Ga)Se₂, в данной работе проведено исследование микроструктурых И оптических свойств партии n-ZnO-пленок с существенно различными значениями электрического сопротивления, осажденных В идентичных технологических условиях на аморфные подложки.

I. Экспериментальная часть

Исследована партия нелегированных пленок оксида цинка (геометрической толщиной h ~ 0,2-0,6 технологически заданной величиной мкм) с удельного сопротивления р и высокой плотностью vпаковки ориетированных кристаллов. Неэпитаксиальные ZnO-пленки формировались методом реактивного магнетронного распыления цинковой мишени в среде аргона с кислородом (10 % Ar, 90 % O₂) при давлении 5×10⁻³ мм. рт. ст. и различных технологических параметрах. Разработанные тонкопленочные ZnO-покрытия отличаются относительной простотой и высокой воспроизводимостью изготовления в условиях технологического контроля параметров удельного сопротивления в пределах $\rho = 3 \times 10^{-4} - 1 \times 10^{7}$ Ом·см.

Изучение взаимосвязи электрических характеристик слоев ZnO с параметрами процесса их нанесения проводилось методами непосредственного измерения величины удельного сопротивления ρ при комнатной температуре (300 K), путем формирования низкоомных "точечных" контактов в плоскости покрытий.

Контроль воспроизведения стехиометрического состава в ZnO-пленках осуществлялся по измерениям интенсивности поглощения (оптической плотности) пленочных образцов в спектральной области краевого поглощения, а также в области прозрачности номинанально чистых ZnO-кристаллов. Анализ элементного состава распределения толщине ZnO-пленок кислорода и цинка по проводился методам сканирующей Ожеспектроскопии.

Структурные и морфологические свойства серии ZnO-покрытий с существенно различными значениями удельной проводимости р, включая распределение кристаллов по поверхности и объему образцов, определялись методами рентгенофазового анализа и растровой электронной микроскопии. Исследования фазового состава и структурных характеристик ZnO-пленок проводились на установке ДРОН-3М (CuK α излучение, $\lambda = 1,5405$ Å) с графитовым монохроматором в диапазоне 20 = 10 -90°. Идентификация фазового состава пленок проводилась методом сравнения экспериментально установленных межплоскостных расстояний с данными (Joint Committee on Powder Diffraction Standard JCPDS, ZnO Card No. 067848). _ Морфология поверхности изучалась методами сканирующей электронной микроскопии (SEM S-800,

Hitachi, Япония).

Спектры пропускания ZnO-пленок исследовались в диапазоне длин волн 0,19-3,00 мкм на спектрофотометре Cary-500 Scan (UV-Vis-NiR Spectrometer, Varian, США).

II. Результаты и их обсуждение

Разработаны "мягкие" щадящие режимы нанесения тонких *i*-ZnO покрытий — буферных слоев, не оказывающие деструктирующего воздействия на поверхность поглощающего слоя. Путем оптимизации параметров технологического процесса наряду с высокоомными пленками i-ZnO получены пленки преднамеренно нелегированного *п*-ZnO с величиной пропускания более 90% в видимой и ближней ИК области спектра и удельным 3×10⁻⁴ сопротивлением вплоть до Ом.см. перспективные для применения в качестве прозрачных проводящих электродов.

	Таблиця		
Номер образца	Геометрическ ая толщина, <i>h</i> (мкм)	ТЭДС, а _{ср} (мкВ/К)	Удельное сопротивл ение, р (Ом∙см)
№ 55	~0,3	~ 95	6,5
Nº 54	~0,45	144	1,9
Nº 64	0,63	107	0,13
Nº 53	0,46	68	3,4×10 ⁻³
№ 63 *	0,64	67	2,5 ×10 ⁻³

*)	Для образца	№ 63: µ =	18 см ² /В×с;	$n = 1,4 \times 10^2$	⁰ см ⁻³
----	-------------	-----------	--------------------------	-----------------------	-------------------------------

Изучение взаимосвязи электрических характеристик слоев ZnO с параметрами процесса их нанесения позволило определить условия формирования пленок с воспроизволимыми значениями электрического удельного сопротивления в пределах $\rho = 3 \times 10^{-4} - 1 \times 10^{7}$ Ом·см.. Установлено, что доминирующим фактором, определяющим величину проводимости пленок ZnO является изменение концентрации свободных носителей, контролируемое кислородными вакансиями.

Исходя из результатов измерений величины удельного сопротивления партии ZnO-пленок (см. таблицу), n-ZnO-покрытия разной заданной величины проводимости были выбраны как образцы для аттестации структурно-фазового состава и оптических свойств. Влияние микроструктурного фактора (фазового состава, плотности упаковки и пространственной ориентации ZnO-кристаллов) на величину оптического пропускания покрытий в области прозрачности устанавливалось методом сравнения спектральных характеристик номинально чистых ZnO-покрытий с существенно различными характеристиками удельного сопротивления.

Установлена изотропная морфология

Рис. 2. Рентгеновские дифрактограммы ZnOпленок № 54 (а), 53 (б), 63 (в) и 64 (г), соответственно (см. таблицу образцов)

микроструктуры и однотипная преимущественная ориентация пленкообразующих ZnO-кристаллов по отношению к плоскости подложки. Оцененный для ZnO-пленок средний размер кристаллов d составляет ~60–70 нм не зависимо от величины проводимости

Когерентная покрытий. упорядоченность направления роста кристаллитов (рис. 2-3) для n-ZnO-покрытий разной величины проводимости указывают на высокую кристалличность неэпитаксиальных пленочных структур. Согласно данным рентгеновского фазового анализа, приведенным на рис. 2, установлено, что i-ZnO- и n-ZnO-пленки являются поликристаллическими и кристаллизуются в гексагональной структуре с преимущественной ориентацией в направлении [002]. На дифрактограммах n-ZnO-пленок наблюдаются рефлексы от плоскости (002) первого и второго порядка отражений (004) при 20 = 34,34 ° и 20 = 72,41° соответственно. Угловое положение обоих пиков хорошо согласуется с табличными JCPDS-ZnO-данными для номинально чистого оксида цинка. Аналогичная ситуация характерна И лля неактивированных i-ZnO-пленок.

Рис. 3. Фотографии микрорельефа (х50000) вертикальных сечений (*a*) и поверхности (*б*) ZnO-пленки № 64 (см. таблицу образцов)

Данные рентгенофазового анализа коррелируют с результатами электронной микроскопии рельефа поверхности и поперечного скола (рис. 3) ZnO-образца № 64 (см. таблицу образцов). Как видно из рис. 3, плотноупакованные кристаллические ZnO-

Рис. 4. Спектры длинноволнового (*a*) и краевого УФ-пропускания (δ), а также спектры краевого поглощения $\alpha \times h$ (ϵ), зависимости ($\alpha \times h\nu$)² (ϵ) и оцененные величины края поглощения *E*g партии ZnO-пленок (см. таблицу образцов)

структуры характеризуются самоорганизацией

кристаллов в слои, параллельные плоскости подложки (рис. 3, *a*), а также относительно невысокой величиной шероховатости поверхности (рис. 3, б). Фотографии микрорельефа поверхности и поперечного скола исследованных образцов, а также данные их рентгенофазового анализа подтверждают факт высокого оптического качества кристаллических ZnO-пленок и воспроизводимости структуры не зависимо от величины их проводимости.

Типичные спектры пропускания, измеренные при 300 К для ZnO-пленок толщиной h ~ 4,5–6,4 мкм, характеризуются наличием широкой полосы поглощения в спектральной области ~ 2400 нм (рис. 4, а), высокой величиной пропускания (~ 90%) в области 400-1600 нм (рис. 4, а,б), а также сдвигом края поглощения в коротковолновую область спектра (рис. 4, в,г), коррелирующим с увеличением поглощения в ИК-области.

Заключение

Из результатов эксперимента по изучению электрических, микроструктурных и спектральных свойств экспериментальных образцов следует, что разработанная технология последовательного осаждения на аморфных подложках ZnO-пленок методом реактивного магнетронного распыления цинковой мишени в среде аргона с кислородом (10% Ar, 90% O₂) при давлении 5×10⁻³ мм. рт. ст. и различных технологических параметрах допускает изготовление высокоупорядоченных кристаллических структур с прогнозируемыми воспроизводимыми значениями величины удельного сопротивления из диапазона пределах $\rho = 3 \times 10^{-4}$ -1×10⁷ Ом.см. Используя тот факт, что при изменении параметров разработанного процесса нанесения пленок ZnO их электрическое сопротивление изменяется в столь широком диапазоне, определены условия формирования в едином технологическом цикле двухслойных структур n-ZnO/i-ZnO, что имеет значение для снижения себестоимости солнечных элементов при ИХ серийном производстве. Предложенные *n*-ZnO-структуры перспективны также для разработки нового класса миниатюрных оптоэлектронных устройств - высокоэффективных транзисторов и излучателей. В связи с чем, целесообразно также отметить следующие характеристики изученных пленочных структур.

Изолирующие буферные слои на основе *i*-ZnOпленок с плотной упаковкой кристаллитов являются высокоомными ($\rho = 1 \times 10^7$ Ом·см), а проводящие *n*-ZnO-слои характеризуются подвижностью носителей ~18 см²·B⁻¹·сек⁻¹, характерной для кристаллических пленочных покрытий высокого оптического качества [11]. Однородность тэдс по площади хорошая. Концентрация носителей составила $n = 1.4 \times 10^{20} \text{ cm}^{-3}$.

ZnO-пленки являются поликристаллическими и кристаллизуются в гексагональной структуре с преимущественной ориентацией в направлении [002]. ZnO-покрытия с существенно различными удельного значениями сопротивления ρ характеризуются самоорганизацией кристаллов диаметром d ~ 60-70 нм в слои, параллельные плоскости подложки, и высокой прозрачностью (~90%) в широком спектральном диапазоне длин волн. С уменьшением удельного сопротивления р, в спектрах краевого поглошения покрытий коротковолновый наблюдается сдвиг края поглошения. коррелирующий с увеличением интенсивности полосы поглощения в области ~2000-2600 нм. Установленная закономерность изменения спектральных свойств ZnO-покрытий в зависимости от величины удельного сопротивления р, может быть объяснена повышением концентрации кислородных вакансий. Таким образом, концентрация кислородных вакансий является доминирующим фактором, определяющим концентрации свободных носителей и величину проводимости разработанных ZnO-покрытий.

Отметим также, что исследованные в данной работе кристаллические n-ZnO-пленки И сформированные на их основе двухслойные структуры n-ZnO/p-ZnO могут найти применение при разработке интегрируемых транзисторов, а также излучателей перестраиваемых в сине-зелено-красной области спектра (450-700 нм) [12-15]. Причем, в излучателях на основе пленочных структур все компоненты рабочего элемента — излучательный слой и *р/п*-компоненты могут быть выполнены в рамках одного технологического процесса, в том с использованием 3-80 нм чиспе слоев с полупроводниковыми нанокристаллами [12, 14-16] или наноструктур LiF/CaF₂ [12, 13]. Предложенные неэпитаксиальные n-ZnO- и p-ZnO-слои, повидимому, могут использоваться и в качестве высокопрозрачных транзисторов для изготовления нового типа высокоэффективных солнечных элементов с поглощательным слоем на основе наноструктурированного кристаллического LiF-слоя с развитой системой поверхности и внесенных в его объем или сформированных на его поверхности в виде тонкопленочного покрытия CdS или/и CdSe нанокристаллов диаметром 3-20 нм [6].

Работа поддержана проектом МНТЦ В-542.

[1] W.-J. Jeong, G.-C. Park. // Solar Energy Materials and Sollar Cells, 65, pp. 37-45, (2001).

- [2] V.F. Gremenok, I.V. Bodnar, R.W. Martin, M.V. Yakushev, I. Martil, F.L. Martinez, E.P. Zaretskaya, I.A. Victorov, O.V. Ermakov, C.A. Faunce, R.D. Pilkington, A.E. Hill, R.D. Tomlinson, Proceed. 16th European Photovoltaic Solar Energy Conference, Glasgow, pp. 763-766, (2001).
- [3] V.F. Gremenok, R.W. Martin, I.V. Bodnar, M.V. Yakushev, W. Schmitz, K. Bente, I. Martil, F.L. Martinez, E.P. Zaretskaya, I.A. Victorov, O.V. Ermakov, C.A. Faunce, R.D. Pilkington, A.E. Hill and R.D. Tomlinson, Thin Solid Films, 394(1-2), pp. 23-28, (2001).
- [4] E.P. Zaretskaya, V.F. Gremenok, V.B. Zalesski, R.W. Martin, V.A. Ivanov, I.A.Victorov, M.V. Yakushev, O.V. Ermakov and F.V. Kurdesau, // *Solid State Phenomena*, 80-81, pp. 287-292, (2001).
- [5] Y. Segawa, H.D. Sun, T. Makino, M. Kawasaki, H.Koinuma // Phys.Stat.Sol. (a) 192(1), pp. 14-20, (2002).
- [6] O.V. Goncharova, V.S. Kalinov, A.P. Voitovich. In: Abstr 5th European Conf. on Luminescent Detectors and Transformers of Ionizing Radiation (Prague, Czech Republic, Sept.1-5, 2003) 208 p.
- [7] O. Agyeman, C.-N. Xu, W. Shi, X.-G. Zheng and M. Suzuki // Jpn. J. Appl. Phys., 41 pp. 666-669, (2002).
- [8] M. Koyano, P. QuocBao, Le thi ThanhBinh, Le HongHa, N. NgocLong, and S. Katayama // Phys. Stat. Sol.(a), 193(1), pp. 125-131, (2002).
- [9] D.C. Look, R.L. Jones, J.R. Sizelove, N.Y. Garces, N.C. Giles, L.E. Halliburton // Phys. Stat. Sol. (a), 195(1) pp. 171-177, (2003).
- [10] М.Б. Котляревский, А.Н. Георгобиани, И.В. Рогозин, А.В. Мараховский // ЖПС, 70 сс. 86-89, (2003).
- [11] A. H. Jayatissa // Semicond. Sci. Technol. 18 L27-L30, (2003).
- [12] O.V. Goncharova, V.S. Kalinov, A.P. Voitovich. In: Abstr. Intern. Conf. on Luminescence and Opt. Spectroscopy of Condensed Matter (Budapest, Hungary, August 24-29, 2002) 68, 69
- [13] А.П. Войтович, О.В. Гончарова, В.С. Калинов, А.П. Ступак // ЖПС, 70(1) сс. 116-123, (2003).
- [14] О.В. Гончарова. В кн.: "Новые материалы для тонкопленочных функциональных элементов электронной техники", под ред. В.А. Лабунова, Минск сс. 99-172, (1994).
- [15] A.P. Voitovich, O.V. Goncharova. In: "Physics, chemistry, and application of nanostructures", V.E. Borisenko, A.B. Filonov, S.V. Gaponenko, V.S. Gurin, eds. World Scientific, Singapore, NJ, London, Hong Kong pp. 25-33, (1997).
- [16] О.В. Гончарова, А.В. Демин. Способ получения фоточувствительных, резистивных и оптически нелинейных тонкопленочных гетероструктур на основе полупроводниковых и диэлектрических материалов, патент России No.2089656 (1997).

V.B. Zalesski¹, T.R. Leonova¹, O.V. Goncharova², I.A. Victorov³, V.F. Gremenok³, E.P. Zaretskaya³

Investigation of Electrical and Optical Characteristics of Zinc Oxide Thin Films Formed by Reactive Magnetron Sputtering

¹Institute of Electronics, National Academy of Sciences of Belarus, 22 Logoisky tract.,220090 Minsk, Belarus; *e-mail: zalesski@inel.bas-net.by;

²Institute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, 70 F. Skorina Ave., 220072 Minsk, Belarus; E-mail: Olga.Goncharova@imaph.bas-net.by

³Institute of Solid-State and Semiconductor Physics, National Academy of Sciences of Belarus, 17 P.Brovki Str., 220072 Minsk, Belarus; *e-mail: <u>gremenok@iftp.bas-net.by</u>

In this article we present the results of development of non-epitaxially grown i-ZnO- or/and n-ZnO-films for preparation of high-transparent electrical contact and buffer layers of CuInSe₂- and Cu(In,Ga)Se₂-based solar cells. Non-doped zinc oxide films were prepared on glass substrates by the reactive magnetron sputtering of nominally-pure Zn-targets in argon-oxygen atmosphere. Electrical, structural and optical properties of a series of ZnO-films containing various amounts of oxygen vacancies have been studied with reference to the optimal technological parameters put forward for ZnO-films with definite magnitude of electrical resistivity ρ . UV--visible absorption spectra, X-ray diffraction, and Hall effect measurements were carried out. Results show that ZnO-films prepared by this method are preferentially oriented with the c-axis perpendicular to the substrate surface. The results of Hall effect measurements show that n-type conducting ZnO-films with electron concentrations as high as 1.4×10^{20} cm⁻³ were obtained by this method. The electrical resistivity parameter of elaborated ZnO-films was found to be technologically controlled in the region $\rho = 3 \times 10^{-4} - 1 \times 10^{7}$ Om-cm as well as their high transmission was detected to be the result of the structure. Formation of densely-packed high-oriented crystalline ZnO-films with definite ρ at appropriate growth conditions is observed. Possible growth mechanism responsible for the formation of i-ZnO- or/and n-ZnO-films with definite ρ is discussed.