PACS numbers: 61.82.Bg, 81.30.B, 61.66.D

ISSN 1729-4428

М.В. Карпець, С.О. Фірстов, Л.Д. Кулак, І.Д. Горна, Н.Н. Кузьменко, Г.Ф. Саржан

Особливості фазоутворення в швидкозагартованих сплавах Al-Fe-Cr при наявності квазікристалів

Інститут проблем матеріалознавства ім. І.М. Францевича НАНУ, вул. Кржижанівського 3, Київ, 03142, Україна, E-mail: <u>karp@ipms.kiev.ua</u>

Вивчені структурні особливості та фазовий склад розпилених сплавів системи Al-Fe-Cr, одержаних методом спінінгування із розплаву. Розпилені порошки в вихідному стані містять дві фазові складові: квазікристалічну фазу (ψ) з ікосаедричною симетрією (період гратки в шестимірному просторі $a_{\psi} = 0,6484(2)$ нм) і ГЦК- фазу на основі алюмінію. Рентгенографічним *in situ* дослідженням встановлено протікання фазового перетворення $\psi \rightarrow Al_6$ Fe при температурах 653-673 К. Показано, що інтерметалід Al_6Fe в досліджених зразках існує до температури 823 К. Нагрів зразків вище температури 823 К призводить до появи стабільних інтерметалідів Al₁₃Fe₄ i Al₁₃Cr₂.

Ключові слова: квазікристали, інтерметаліди, рентгенівське *in-situ* дослідження, коефіцієнт термічного розширення, система Al-Fe-Cr.

Стаття поступила до редакції 16.05.2005; прийнята до друку 15.01.2006

Останнім часом ведеться інтенсивний пошук матеріалів на основі алюмінію з квазікристалічною складовою [1]. Це обумовлено специфічною комбінацією механічних та фізико-хімічних з квазікристалічною властивостей в сплавах структурою. В квазікристалах на основі алюмінію поєднуються висока твердість (6-10 ГПа), високий модуль пружності (до 140-200 ГПа), висока зносостійкість, низький коефіцієнт тертя при порівняно невеликій густині (біля 4,7 г/см³), корозійна стійкість підвищена та низька теплопровідність на рівні керамічних матеріалів. Однією з перспективних в цьому відношенні є система Al-Fe-Cr. Застосування великих швидкостей дозволяє охолодження алюмінієвих сплавів зафіксувати в них метастабільні фази та розширити розчинність легуючих елементів в алюмінії [2,3].

Метою даного дослідження є встановлення особливостей протікання фазових перетворень з допомогою вмсокотемпературного дифрактометричного дослідження сплавів системи Al-Fe-Cr, одержаних методом спінінгування перегрітого розтопу.

Для дослідження були обрані два сплави системи Al-Fe-Cr AFC6 (4 ат. % Fe, 2 ат. % Cr) і AFC11 (8 ат. % Fe, 3,4 ат. % Cr) (табл. 1). В якості вихідних компонентів використовувалися: алюміній марки A6, хром чешуйчастий электролітичний (Тулачермет) та залізо – марки Армко.

Зразки у вигляді швидко закристалізованих

"стрічок" одержували методом відцентрового розпилення розплаву на мідний диск в середовищі інертного газу. Швидкість обертання мідного дискакристалізатора складала 1600 об./хв., шо забезпечувало швидкість охолодження ~10⁶ K/c. Дифрактометричне дослідження проводили 3 дифрактометра ДРОН-УМ1 допомогою в монохроматичному СиКа-випромінюванні. В якості монохроматора використовували монокристал графіту встановлений на дифрагованому пучку. Високотемпературні рентгенографічні дослідження виконували з використанням приставки УВД-2000 в атмосфері гелію. Під час зйомок дифрактограм при високих температурах об'єм приставки продувався гелієм із надлишковим тиском 20 кРа у порівнянні з атмосферним. Для визначення періодів гратки фаз у досліджуваному інтервалі температур в якості внутрішнього стандарту використовували порошок кремнію, нанесений на поверхню підпресованих стрічок. Період гратки кремнію для конкретного значення температури зйомки Т розраховували, згідно співвідношення запропонованого в [4]:

$$a(T) = a_0 (1 + \sum_{i=1}^{3} \alpha_i (T - T_0)^i), \qquad (1)$$

де a_0 – період елементарної гратки Si при температурі $T_0 = 293$ K, а α_i – термічні коефіцієнти розширення для Si: $\alpha_i = 1,887$ 10⁻⁶ K⁻¹, $\alpha_2=1,934$ · ·10⁻⁹ K⁻², $\alpha_3 = -4,544$ 10⁻¹³ K⁻³. Квазікристалічний період ікосаедричної фази в досліджуваних зразках

обчислювали по положенню трьох найбільш інтенсивних максимумів з індексами Кана (N,M) – (18,29), (20,32) і (52,84) [5]. Середній температурний коефіцієнт лінійного розширення для досліджуваних фаз в інтервалі температур від T_0 до T розраховували відповідно до співвідношення:

$$\alpha = \frac{(a - a_0)}{a_0(T - T_0)}$$
(2)

де a i a_0 експериментальні значення періоду ідентичності уздовж обраного кристалографічного напрямку при температурах Т і То відповідно. У випадку кристалічних фазових складових, напрямки вибирали уздовж осей елементарної гратки. Для квазікристалічної складової розрахунки проводили за квазікристалічного періоду значенням в шестимірному просторі. Обробку даних дифрактометрического експерименту здійснювали як та з використанням в [6] програми лпя повнопрофільного аналізу рентгенівських спектрів від суміші полікристалічних фазових складових PowderCell 2.4.

Дифрактограми від зразків у литому стані характеризуються наявністю дифракційних максимумів від ГЦК гратки Al і інтерметалідів Al₁₃Fe₄ і Al₁₃Cr₂. Після розпилення фазовий склад вихідних зразків складається з суміші двох фаз: матричного твердого розчину Al і квазікристалічної фази (ψ) із ікосаедричною симетрією (рис. 1). Період елементарної гратки Al у вихідних зразках після розпилення a_{Al}=0,40405(3) нм для AFC11 i a_{Al} = 0,40439(3) нм для AFC6 має занижені значення в порівнянні з табличними даними для чистого Al (0,40496 нм). У той же час, період гратки алюмінію в литому зразку складає $a_{Al} = 0,40498(3)$ нм. Відносна інтесивність піків у-фази у вихідному зразку AFC11 була в 1,9 рази більше в порівнянні зі зразком AFC6. Значення квазікристалічного періоду ікосаедричної фази в досліджуваних зразках у вихідному стані дорівнює 0,6484(5) нм і 0,6473(7) нм для зразків AFC11 і AFC6 відповідно. Згідно даних електронномікроскопічного дослідження розмір частинок уфази коливається в межах 50-200 нм [7].

Таблиця 1

Зразок	Хімічний склад, (ат. %)				
	Al	Fe	Cr	Інші домішки	
AFC6	93,7	4,0	2,0	0,3	
AFC11	88,2	8,0	3,4	0,4	

Рис. 1. Фрагмент дифрактограми при кімнатній температурі сплаву Al-8Fe-3.4Cr в стані після розпилення. Для квазікристалічної фази вказані індекси Кана (N,M) [5]. (СиКα- випромінювання).

Хімічний склад розпилених із розплаву Al-Fe-Cr сплавів

Рис. 2. Фрагменти дифрактограм при температурі 380⁰С та 550⁰С розпиленого сплаву Al-8Fe-3,4Cr. (СиКαвипромінювання).

Для визначення стабільності вихідного фазового складу зразків проводили високотемпературні "in situ" рентгенографічні дослідження при температурах вище 350°С з різними часами витримки. При цьому для кожної конкретної температури виготовляли новий зразок. Для литих зразків в інтервалі температур до 600°С та часу витримки 4 години змін фазового складу не виявлено. Для розпилених зразків при температурах 350°C, 360°C та 370°C на протязі 30 хвилин фазових перетворень не зафіксовано. Перші додаткові дифракційні піки новоутвореної фази нами виявлені після ізотермічної витримки зразка AFC11 30 хвилин при 380°С. Ці ж піки фіксувалися при 400°С після витримки 10 хвилин. Подальше збільшення часу витримки при температурах 380°С, 400°С призводило до підвищення інтенсивностей піків від нової фазової складової. З метою ідентифікації цієї фази і виявлення особливостей її формування, час ізотермічної витримки при $T = 380^{\circ}C$ у процесі рентгенографічного "*in situ*" вивчення зразка AFC11 було збільшено до 4 годин. Фрагмент дифрактограми при цій температурі наведений на рисунку 2. Як видно з наведених даних, після такої витримки ще реєструються максимуми від у-фази, однак їхня інтенсивність у порівнянні з вихідним станом складає 40-50%.

Аналогічне ізотермічне дослідження при температурі 400°С протягом 3 годин проведено для зразка AFC6. В результаті встановлено, що в цих двох зразках формується одна і таж фазова складова – інтерметалід Al₆Fe із структурою типу Al₆Mn з орторомбічною елементарною граткою (пр. гр.

Сст2₁). Для зразка AFC11 після витримки при 380° С на протязі 4 годин і охолодженні до 20° С періоди гратки фази Al₆Fe рівні: a = 0,6504(2) нм, b = 0,7502(2) нм, c = 0,8831(3) нм. Згідно даних роботи [8], для двокомпонентної системи Al-Fe відповідні періоди гратки фази Al₆Fe меньші і становлять: a = 0,6464 нм, b = 0,7440 нм, c=0,8779 нм. Ймовірно це обумовлено заміщенням у вказаній фазі атомів заліза атомами з більшим атомним радіусом, а саме атомами хрому.

Елементарна гратка фази Al₆Fe містить 28 атомів (Z = 4, ρ = 3,36 g/cm³), позиційні структурні параметри згідно [8] наведені в таблиці 2. Розрахунок теоретичної дифракційної картини фази Al₆Fe згідно вказаних атомних параметрів показує, що частина її дифракційних максимумів накладається на відбитки від матричної α-фази Al. Аналіз цього перекриття свідчить, що перша лінія Al (111) найбільше підходить для реєстрації змін її інтенсивності в процесі ізотермічної витримки, оскільки вона перекривається зі слабкими лініями (221) і (130) фази Al₆Fe.

У процесі ізотермічної витримки при 380° С для зразка AFC11 фіксується поступове зниження інтенсивності піків від квазікристалічної складової. Водночас зменшується й інтегральна інтенсивність ліній α-Al. Так для лінії (111)_{Al} за 4 години витримки інтегральна інтенсивність зменшується на 5% і реєструється 10-12 об.% виділеної фази Al₆Fe. Таким чином, утворення інтерметаліду Al₆Fe відбувається за участю двох вихідних фазових складових: α-Al і ψфази. Подібні результати отримані і для зразка AFC6

Таблиця 2

Атом	Позиція	Заселеність позиції	x/a	y/b	z/c
Fe	4a	1	0,4544	0,0000	0,2500
Al(1)	8b	1	0,0200	0,3242	0,0000
Al(2)	4a	1	0,1357	0,0000	0,1000
Al(3)	8b	1	0,2842	0,3190	0,2500
Al(4)	4a	1	0,1357	0,0000	0,4000

Позиційні параметри в структурі Al₆Fe [8]. (Просторова група Cc2m₁)

Таблиця 3.

Результати рентгенографічного 'in-situ' дослідження сплаву Al-8Fe-3.4Cr та коефіцієнти термічного розширення Al, Al₆Fe та квазікристалічної фаз (ψ).

	Результати рентгенографічного дослідження						
Т, ⁰ С	Фаза	Періоди гратки, нм			Середні КТР		
		а, нм	<i>b,</i> нм	С, НМ	$\alpha \cdot 10^{-6}, \mathrm{K}^{-1}$		
20^*	Al	0,40483(2)					
	Al ₆ Fe	0,6504(2)	0,7502(2)	0,8831(3)			
	Ψ	0,6484(5)			14,7(4)		
550	Al	0,41078(2)			26,60(9)		
	Al ₆ Fe	0,6561(1)	0,7566(1)	0,8906(2)	18,6(3), 19,1(3), 19,9(4)		
450	Al	0,40960(1)			26,01(5)		
	Al ₆ Fe	0,6553(1)	0,7550(2)	0,8891(2)	20,0(4), 18,6(6), 20,6(5)		
300	Al	0,40779(1)			23,98(9)		
	Al ₆ Fe	0,6534(1)	0,7529(2)	0,8866(2)	20,3(5), 18,6(9), 21,5(8)		
20**	Al	0,40507(1)					
	Al ₆ Fe	0,6497(1)	0,7490(1)	0,8813(1)			

* – після 380⁰С

** – після 550-300⁰С

при $T = 400^{\circ}C$ та витримці до 180 хвилин. Обчислений середній термічний коефіцієнт лінійного розширення квазікристалічної фази в інтервалі температур до $400^{\circ}C$ наведений у таблиці 2 і складає $14,7*10^{-6}$ K⁻¹.

Ізотермічна витримка зразків при температурах 380°С (AFC11) і 400°С (AFC6) позначається на кутовому положенні дифракційних піків α-АІ. Всі максимуми А1 зміщаються при цьому вбік менших кутів, що свідчить про збільшення періоду елементарної гратки Al і наближенні його значення до табличного значення характерного для чистого Al. Так, після охолодження від 380°С (витримка 4 години) до кімнатної температури зразка AFC11 реєструється значення періоду кубічної гратки α_{Al} = 0,40483(2) нм (табл. 1). Це може свідчити про виділення інтерметаліду те, що Al₆Fe супроводжується збідненням матричного твердого розчину Al елементами з меншим атомним радіусом у порівнянні з атомами алюмінію (наприклад Fe i Cr).

Для визначення області існування фази Al_6Fe у досліджуваних зразках проводили їх високотемпературні рентгенографічні дослідження до температури $600^{\circ}C$. Протягом 30 хв. при температурі $450^{\circ}C$ кількість інтерметаліду AL_6Fe збільшується до 16 об.%. При цьому ще зберігаються

слабкі піки від ψ -фази. Нагрів до температури 550[°]C та витримка протягом 30 хвилин зразка AFC11 призводить до повного зникнення ψ -фази і зразок стає двофазним Al + Al₆Fe (~30 об.%) (рис. 2). Подальше підвищення температури до 600[°]C призводить до повного зникнення інтерметаліду Al₆Fe. Замість нього реєструються відбитки від моноклінних граток інтерметалідів Al₁₃Fe₄ і Al₁₃Cr₂.

Таким чином, інтерметалід Al_6Fe у досліджуваних зразках існує до температури 550^{0} С, будучи метастабільним у досліджуваних зразках. Слід зазначити, що в даній роботі виділення інтерметаліду Al_6Fe спостерігали тільки в зразках, що містять квазікристалічну складову. Напевно цьому сприяє близькість локального атомного оточення в розглянутих фазах. Додатковим доказом цьому слугує також те, що в ряді досліджень двокомпонентної системи Al-Fe квазікристалічну фазу реєстрували при вмісті заліза від 82 ат.% до 86 ат.%.

Оскільки інтерметалід Al_6Fe у визначеному інтервалі температур співіснує з матрицею на основі Al, було виконано дослідження коефіцієнтів термічного розширення для Al_6Fe і Al. З цією метою використовували зразок AFC11, раніше досліджений при температурі $380^{\circ}C$ на протязі 4 годин. Його

піддали рентгенографічному вивченню послідовно при температурах: 20⁶C, 550⁶C, 450⁶C, 300⁶C i 20⁶C iз використанням кремнію в якості внутрішнього стандарту. Результати обчислень періодів елементарних граток фаз Al₆Fe i Al при різних температурах, а також середні термічні коефіцієнти лінійного розширення цих фаз у визначених інтервалах температур наведені в таблиці 2. Як видно з наведених даних середні КТР для матричної фази і інтерметаліду Al₆Fe відрізняються мало. Так, при охолодженні від температури 550[°]C об'єм елементарних граток фаз Al i Al₆Fe зменшується на 4,3% і 3,1% відповідно. При цьому термічні коефіцієнти лінійного розширення фази Al₆Fe мають проміжні значення в порівнянні з квазікристалічною складовою з однієї сторони і матрицею на основі алюмінію з іншої.

Висновки

 В зразках системи Al-Fe-Cr AFC6 (4 ат.% Fe, 2 ат.% Cr) и AFC11 (8 ат.% Fe, 3,4 ат.% Cr) після розпилення з рідкого стану утворюється квазікристалічна складова з ікосаедричною симетрією.

- При наявності квазікристалів в зразках системи Al-Fe-Cr термічна обробка в інтервалі температур 380°C – 500°C на протязі 30 хвилин призводить до утворення в них метастабільної фази Al₆Fe.
- Метастабільна фаза Al₆Fe в системі Al-Fe-Cr існує до температури 550°C. Подальше підвищення температури відпалу призводить до утворення стабільних інтерметалідів Al₁₃Fe₄ i Al₁₃Cr₂.

Карпець М.В. – к.ф.-м.н., старший науковий співробітник; Фірстов С.О. – член-корр. НАНУ, д. ф.-м.н., професор, зав. відділом; Кулак Л.Д. – , к.т.н., старший науковий співробітник, зав. лабораторією; Горна І.Д. – к.ф.-м.н., старший науковий співробітник; Кузьменко М.М. – к.ф.-м.н., старший науковий співробітник; Саржан Г.Ф. – к.ф.-м.н., старший науковий співробітник;

- [1] A. Inoue, H. Kimura. High elevated-temperature strength of Al-based nanoquasicrystalline alloys // *Nanostructured Materials*, **11**(2), pp. 221-231 (1991).
- [2] A. Ziani, A. Pianelli, A. Redjamia et al. Transformation of the quasicrystalline phase Al-Cr-Fe induced by rapid solidification // J. of Mater. Sci., **30**, pp. 2921-2929 (1995).
- [3] C. Zhang, Wu Y., Cai Y. et al. Icosaedral phase in rapidly solidified Al-Fe-Ce alloy // Mater. Sci. Eng., A323, pp. 226-231 (2002).
- [4] Y.S. Touloukian, R.K. Kirby, R.E. Taylor & T.Y.R. Lee. Thermal Expansion, Nonmetallic Solids // *Thermophysical Properties of Matter*, **13**, New York: IFI/Plenum (1977).
- [5] J.W. Cahn, D. Shechtman, D. Gratias. Indexing of icosaedral quasiperiodic crystals // Mat. Res. Soc., 1, pp. 13-26 (1986).
- [6] M.V. Karpets, Yu.V. Milman, O.M. Barabash et al. The influence of Zr alloying on the structure and properties of Al₃Ti // *Intermetallics*, **11**, pp. 312-321 (2003).
- [7] И.Д. Горная, М.В. Карпец, Н.Н. Кузьменко и др. Исследование структуры быстрозакаленных алюминиевых сплавов // Электронная микроскопия и прочность материалов. Киев: ИПМ НАН Украины, вып. 12, сс. 31-36 (2003).
- [8] L.K. Walford. The Structure of the Intermetallic Phase FeAl₆ // Acta Cryst., 18, pp. 287-291 (1965).

M.V. Karpets, S.O. Firstov, L.D. Kulak, I.D. Gorna, N.N. Kuzmenko, G.F. Sarghan

Peculiarity Phase Formation in Rapidly Solidified Al-Fe-Cr Alloys at present Quasicrystalls

Frantsevich Institute for Problems of Materials Science, 3 Krzhizhanovsky Str., Kyiv-142, 03680, Ukraine, e-mail: <u>karp@ipms.kiev.ua</u>

Structure and phase composition of Al-Fe-Cr powders atomized by spining are investigated. As-atomized powders had two phase components: a quasicrystalline phase of icosahedral symmetry (ψ) and lattice parameter $a_6 = 0.6484(2)$ nm, and a fcc phase on base Al. X-ray *in situ* investigation (monochromatic CuK α radiation) in He environment of powders while heating revealed the occurrence in them of a phase transition $\psi \rightarrow Al_6Fe$ at temperature of 653-673 K. X-ray diffractometric analysis has shown the existence of the Al₆Fe-phase in the given powder sample to a temperature of 823 K. Heating the samples high 823 K was accompanied by the appearance of the stable intermetallics of $Al_{13}Fe_4$ and $Al_{13}Cr_2$ type.