УДК 621.315.592

ISSN 1729-4428

Генцарь П. О., Власенко О. І., Стронський О.В.

Контроль структурної досконалості епітаксійних плівок n-GaP методом модуляційної спектроскопії електровідбивання

Інститут фізики напівпровідників ім. В.Є. Лашкарьова НАН України 03028 м. Київ-28, проспект Науки 41, <u>gentsar@isp.kiev.ua</u>.

Досліджено спектри електровідбивання гомоепітаксійних плівок n-GaP (111) з концентрацією електронів n = 10^{16} -5· 10^{16} см⁻³ з використанням електролітичної методики в спектральному діапазоні 2.5-3.2 eB. Вимірювання проведені при кімнатній температурі в неполяризованому світлі (для поверхні (111) поляризаційна залежність відсутня). Із кількісного аналізу спектрів електровідбивання отримані значення фізичних параметрів та параметрів області просторового заряду приповерхневого шару досліджуваного матеріалу: енергій оптичних переходів E₀ (перехід $\Gamma_{8V} - \Gamma_{6C}$) і E₀+ Δ_0 ($\Gamma_{7v} - \Gamma_6$), електрооптичної енергії h θ , поверхневого електричного поля F_s, феноменологічного параметру уширення Γ , енергетичного часу релаксації носіїв заряду τ , відносного фазового фактору ψ , протяжності осциляції хвильової функції квантово-механічної частинки $\lambda_{K\Phi}$ із приведеною ефективною масою μ при даному поверхневому електричному полі F_s, величини електронної рухливості μ_e . Зроблений аналіз зв'язку між періодами осциляцій Келдиша-Франца ΔE_m і електрооптичною енергією h θ .

Стаття поступила до редакції 07.07.2006; прийнята до друку 15.09.2006

Вступ

Товщина приповерхневого шару, яка формує сигнал електровідбивання, що спостерігається в особливих точках зони Брілюена, визначається глибиною проникнення електричного поля (глибина екранування $L_{Д}$ або L_{TF}) та світла $(d = \frac{\lambda}{4\pi |N|},$ де N=n+i χ – комплексний показник заломлення). Співвідношення даних величин є визначальним для отримання інформації про досліджуваний матеріал спектрів iз [1-4]. Модуляційна електровідбивання дозволяє спектроскопія електровідбивання визначити енергію оптичних переходів для прямих міжзонних переходів (що пов'язано із зміною діелектричної проникності матеріалу ε (E = $\hbar \omega$, F, ε)) B ymobax, коли коефіцієнт поглинання α дуже високий, щоб його можна було визначити, вимірюючи пропускання, тобто в області енергій фотона, значно більшій тієї, що відповідає краю поглинання. Для вимірювання відносної зміни відбиваючої здатності матеріалу в електричному полі F, де R – коефіцієнт

відбивання, достатньо в приповерхневому шарі напівпровідника створити електричне поле. Електролітична методика [5, 6]дозволяє модулювати поле поверхневого бар'єру на зразку шляхом прикладання змінної напруги, а прикладаючи ще і постійне зміщення можна міняти середнє значення поля. Використання модуляційної спектроскопії електровідбивання дозволяє зробити висновки про структурну досконалість приповерхневих шарів матеріалів електронної техніки і виявити вплив фізико-хімічних обробок на стан поверхні. Геометричні розміри елементів електронних приладів сучасного покоління такі, що поверхня відіграє (приповерхневий шар) визначальну роль в їх роботі. Важливою сполукою для практичного використання в електронній техніці є фосфід галію завдяки своїм оптичним та електрофізичним властивостям. GaP є матеріалом для виготовлення приймачів випромінювання, світлодіодів, фотодіодів та ін. Завдяки цьому інтенсивно досліджуються як монокристали, так і епітаксійні плівки GaP.

Метою даної роботи був контроль структурної досконалості епітаксійних плівок *n*-GaP з використанням модуляційної спектроскопії електровідбивання.

I. Методика експерименту

Досліджено електровідбивання спектри плівок n-GaP гомоепітаксійних (111)3 концентрацією електронів $n = 10^{16} \cdot 5 \cdot 10^{16}$ см⁻³ з використанням електролітичної метолики (електроліт - водний розчин 1н. КСІ). Вимірювання проведені в спектральній області 2,5 - 3,2 еВ, яка включає прямі переходи E_0 ($\Gamma_{8V} - \Gamma_{6C}$) з енергією 2,74 eB i E_0 + $\Delta_0(\Gamma_{7v} - \Gamma_{6c})$ з енергією 2,84 eB в неполяризованому світлі (оскільки для поверхні (111)поляризаційна залежність відсутня). Експериментальні результати для даного матеріалу одержані при кімнатній температурі на частоті першої гармоніки модуляції (f = 2.2 кГц) з пороговою чутливістю 5·10⁻⁶ і спектральною роздільною здатністю 3·10⁻³ eB.

II. Результати та їх обговорення

На рис.1 приведений спектр електровідбивання епітаксійної плівки n-GaP (111) з концентрацією вільних електронів n = $3 \cdot 10^{16}$ см⁻³. Полярність екстремумів електровідбивання, а також залежність їх амплітуд від прикладеної напруги вказує на те, що на поверхні реалізується шар збіднення. Значення потенціала плоских зон складає, по даним електровідбивання, $\phi_{fb} = -1,8$ В.

Рис. 1. Спектр електровідбивання епітаксійної плівки n-GaP (111) з концентрацією електронів $n = 3 \cdot 10^{16} \text{ см}^{-3}$. Суцільна крива – експеримент. Пунктирна крива – теоретична для параметрів $E_0 = 2,74 \text{ eB}; h\theta = 0,055 \text{ eB}; \Gamma = 0,034 \text{ eB}.$

Звертає на себе увагу той факт, що спектр електровідбивання на рис. 1 містить затухаючі осциляції Келдиша-Франца, які накладаються на порівняно слабкий сигнал електровідбивання, обумовлений переходами електронів із спінорбітально відщепленої валентної зони в зону провідності. Це вказує на те, що наближення слабкого поля [7] в умовах вимірювань не виконується, і теоретичний розрахунок кривої електровідбивання може бути виконаний чисельно з використанням уширених функцій Ейрі [1, 5, 6]. В рамках одноелектронної теорії зміна дійсної частини діелектричної проникності

$$\Delta \varepsilon_1(\mathbf{E}, \mathbf{F}) = \varepsilon_1(\mathbf{E}, \mathbf{F}) - \varepsilon_1(\mathbf{E}, \mathbf{0}), \qquad (1)$$

яка обумовлена електричним полем F, для трьохмірної критичної точки типу ЗДМ₀ рівна

$$\Delta \varepsilon_{1}(\mathbf{E},\mathbf{F}) = \frac{C(\hbar \theta)^{1/2}}{\mathbf{E}^{2}} G(\eta), \qquad (2)$$

де С – постійна величина; Е = $\hbar \omega$ – енергія фотона; G(η) – електрооптична функція другого роду, яка виражається через функції Ейрі, що описують одномірний рух вільних носіїв заряду в однорідному електричному полі зовнішніх сил [1, 5, 6, 8-10].

$$\eta = \frac{E_0 - \hbar\omega + i\Gamma}{\hbar\theta},\tag{3}$$

де E_0 – енергія оптичного переходу; Γ – феноменологічний параметр уширення; $\hbar\theta = \left(\frac{e^2 F^2 \hbar^2}{2\mu}\right)^{1/3}$ – характерний параметр теорії ефекту Келдиша-Франца (електрооптична енергія); $\mu^{-1} = (m_e^*)^{-1} + (m_p^*)^{-1}$ – обернена приведена ефективна маса; $m_e^* i m_p^*$ – ефективні маси відповідно електронів і дірок, які беруть участь в розглядуваному оптичному переході.

Згідно [11-12] для експериментального спектру електровідбивання в сильнопольовому режимі вимірювань справедливе співвідношення

$$m\pi = \psi + \frac{4}{3} \left(\frac{E_m - E_0}{\hbar \theta} \right)^{3/2}, \qquad (4)$$

де Ψ – відносний фазовий фактор; т – номер осциляції; E_m – енергетичне положення екстремуму осциляції. Співвідношення (4) показує на те, що із нахилу залежності $\frac{4}{3\pi} (E_m - E_0)^{3/2}$ від номеру осциляції т можна визначити ($\hbar \theta$)^{3/2}, а звідси і електрооптичну енергію $\hbar \theta$. На рис. 2 побудована залежність $\frac{4}{3\pi} (E_m - E_0)^{3/2}$ від номеру осциляції т із спектру електровідбивання, наведеного на рис.1. Нахил цієї залежності складає ($\hbar \theta$)^{3/2} = 1,29·10⁻² eB^{3/2}. Це відповідає електрооптичній енергії 0,055 еВ. Значення поверхневого електричного поля визначалось за формулою

$$F_{\rm s} = \left[\frac{2\mu(\hbar\theta)^3}{e^2\hbar^2}\right]^{1/2}$$
(5)

і дорівнює 2,1[·]10⁷ В/м. Для розрахунку F_s були використані наступні значення ефективних мас в GaP: $m_e^* = 0,126 m_0$; $m_p^* = 0,5 m_0$ [13].

Аналіз експериментального спектру електровідбивання (рис.1) для епітаксійної плівки n-GaP (111) із концентрацією електронів n = $3 \cdot 10^{16}$ см⁻³ за допомогою функцій Ейрі від комплексної змінної, які враховують уширення оптичних спектрів (залежність аргументу η від феноменологічного параметру уширення Г) пов'язане з часом енергетичної релаксації носіїв заряду τ , а також неоднорідність модулюючого електричного поля F знайдено феноменологічний параметр уширення Г, значення якого дорівнює 0,034 eB. Отримане значення практично співпадає з напівшириною першого екстремуму в спектрі електровідбивання (рис.1). На рис. 1 разом з експериментальними даними представлені результати розрахунків (пунктирна крива) при отриманих параметрах: $E_0 = 2,74 \text{ eB}$ (енергія першого екстремуму в спектрі електровідбивання); $\hbar \theta = 0,055 \text{ eB}; \Gamma = 0,034 \text{ eB}. У високоенергетичній$ області спектру відмінність теоретичної кривої електровідбивання від експериментальної залежністю пояснюється феноменологічного параметру уширення Г від енергії фотонів Е.

осциляції т для епітаксійної плівки n-GaP (111) з концентрацією електронів $n = 3 \cdot 10^{16} \text{ см}^{-3}$.

Із формули (4) слідує, що

$$\Delta \mathbf{E}_{1} = \mathbf{E}_{1} - \mathbf{E}_{0} = \left[\left(\frac{3}{4} (\pi - \psi) \right)^{2/3} \right] \times \hbar \theta \qquad ,(6)$$

$$\Delta E_{m} = E_{m} - E_{m-1} = , \qquad (7)$$
$$= \left[\left(\frac{3}{4} (m\pi - \psi) \right)^{2/3} - \left(\frac{3}{4} ([m-1]\pi - \psi) \right)^{2/3} \right] \times \hbar \theta$$

де m = 2,3,4,... Крім того із формули (4) випливає, що

$$\Delta \mathbf{E} = \mathbf{E}_{\mathrm{m}} - \mathbf{E}_{\mathrm{0}} = \left(\frac{3}{4} \left(\mathbf{m}\boldsymbol{\pi} - \boldsymbol{\psi}\right)\right)^{2/3} \cdot \hbar\boldsymbol{\theta} , \qquad (8)$$

де ∆Е – віддаль від енергії переходу до екстремума останньої осциляції. Між отриманими експериментальними параметрами повинен існувати зв'язок

$$\Delta E = E_{m} - E_{0} = 2 \frac{(\hbar \theta)^{3}}{\Gamma^{2}} = 2 \left(\frac{e^{2} F^{2} \tau^{2}}{2\mu} \right).$$
(9)

Згідно наших експериментальних даних значення ψ , отримане із екстраполяції прямої на рис. 2 і формули (4) дорівнює $\frac{\pi}{2}$. Відомо, що модуляційний спектр $\frac{\Delta R}{R}$ має різкий екстремум

при енергії забороненої зони E_0 , швидко затухає нижче E_0 (в класично забороненій енергетичній області $\hbar \omega < E_0$) і осцилює вище E_0 (класично дозволена область енергії фотонів $\hbar \omega > E_0$) [1, 2, 6, 9]. Для випадку $\psi = \pi/2$ на основі формул (6)-(7) отримуємо наближені співвідношення $\Delta E_1 = 1.115\hbar\theta$; $\Delta E_2 = 1.205\hbar\theta$; $\Delta E_3 = 0.94\hbar\theta$; $\Delta E_4 = 0.82\hbar\theta$; $\Delta E_5 = 0.745\hbar\theta \dots$

Виходячи iз асимптотичної форми високопольової границі електрооптичних функцій, авторами [14] також було показано, що період третьої осциляції складає $\Delta E_3 = 0.94\hbar \theta$. У наших вимірюваннях $\Delta E_3 = 0,052$ eB для епітаксійної плівки n-GaP (111) із концентрацією електронів n = $3 \cdot 10^{16}$ см⁻³ (рис.1), що добре узгоджується з результатом, отриманим в [14]. Співвідношення (6)-(7) дуже важливі для безпосереднього визначення електрооптичної енергії по експериментальній кривій електровідбивання (для трьохмірної критичної точки ψ = π/2). В таблиці наведені значення ∆Е_m, які визначені згідно рис.1 та ћө, які обчислені згідно формул (6)-(7) для епітаксійної плівки n-GaP (111) із концентрацією електронів n = 3·10¹⁶ см⁻³. Таблиця підтверджує справедливість використання формул (6)-(7).

Таблиця

Значення ΔE_m і ћ θ для епітаксійної плівки n- GaP (111) з концентрацією електронів n = $3 \cdot 10^{16}$ см⁻³

GaP		
m	ΔE_{m} ,	ħθ,
1	0,061	0,0547
2	0,066	0,05477
3	0,052	0,05532
4	0,045	0,05488
5	0,041	0,05503

Виходячи принципу 3 невизначеностей Гейзенберга для енергії Е і часу t ($\Delta E \Delta t \ge \hbar$), релаксаційні ефекти в поглинанні світла кристалом феноменологічним параметром описують [1] уширення Г, пов'язаного з часом життя au фотогенерованих носіїв заряду співвідношенням $\Gamma = \hbar/\tau$. Це співвідношення дозволяє оптичним методом електровідбивання оцінити значення auдля відповідних електронних переходів. Для епітаксійної плівки n-GaP (111) з концентрацією вільних електронів $n=3\cdot 10^{16}$ см⁻ з $\tau = \hbar/\Gamma = 1,94\cdot 10^{-14}$ с. Використовуючи зв'язок між феноменологічним параметром уширення Г і

рухливістю [15] можна оцінити величину електронної рухливості в мінімумі зони провідності Γ_{6C} для епітаксійної плівки n-GaP з концентрацією електронів n = 3·10¹⁶ см⁻³. Отримане значення електронної рухливості дорівнює μ_e (Γ_{6C}) = 370 см²/В·с.

Віддаль ΔE від енергії переходу E_0 до екстремума останньої осциляції для епітаксійної плівки n-GaP (111) з концентрацією електронів n = $3 \cdot 10^{16}$ см⁻³ дорівнює $\Delta E = 0,265$ еВ. Глибина проникнення світла обчислена за формулою

 $d = \frac{\lambda}{4\pi N}$, (де N – комплексний показник залом-

лення) в енергетичному діапазоні 2,5-3,2 еВ змінюється від 9,76 нм (для E = 3,2 eB) до 12,49 нм E=2,5 eB). (для При обчислені глибини приймали проникнення світла значення діелектричної проникності є фосфіду галію рівне 10. Глибину проникнення електричного поля

оцінено згідно [6] за формулою $L_{\mu} = \left(\frac{\epsilon\epsilon_0 \kappa T}{e^2 n}\right)^{1/2}$. У нашому випадку L_{μ} складає 21,46 нм $(\epsilon_0 = 8,854 \cdot 10^{-12} \frac{\Phi}{M}, \kappa T = 0,025 \text{ eB})$. Відомо, що

інформаційна глибина досліджуваного матеріалу визначається найменшою із величин глибини проникнення світла і глибини проникнення електричного поля. Тому можна зробити висновок, що інформаційна глибина для епітаксійної плівки n-GaP (111) визначається глибиною проникнення світла d. Протяжність осциляції хвильової функції

квантово-механічної частинки $\lambda_{K\Phi} = \frac{\hbar\theta}{eF_s}$) із

приведеною ефективною масою µ в однорідному електричному полі F_s (рис. 2) дорівнює 2,62 нм.

Висновки

Експериментальні результати дослідження гомоепітаксійних плівок n-GaP (111) 3 концентрацією електронів 10¹⁶ – 5^{-10¹⁶ см⁻³} методом електровідбивання показали:

1. Експериментальні спектри електровідбивання епітаксійних плівок n-GaP (111) добре узгоджуються 3 теоретичними спектрами електровідбивання побудованими за допомогою функцій Ейрі, які враховують уширення оптичних спектрів (залежність η від Г) пов'язане з часом

енергетичної релаксації носіїв заряду τ, а також неоднорідність модулюючого електричного поля при отриманих параметрах.

2. Із кількісного аналізу спектрів електровідбивання отримано значення фізичних параметрів та параметрів області просторового заряду плівок: енергій оптичних переходів E_0 (перехід $\Gamma_{8V} - \Gamma_{6C}$) і $E_0 + \Delta_0 (\Gamma_{7v} - \Gamma_6)$, електрооптичної енергії $\hbar \theta$, поверхневого електричного поля F_s масою µ при даному поверхневому електричному полі F_s, величини електронної рухливості µ_е в мінімумі провідності Γ_{6C} , зони феноменологічного параметру уширення Г, енергетичного часу релаксації носіїв заряду т, відносного фазового фактору у, протяжності осциляції хвильової функції квантово-механічної частинки $\lambda_{K\Phi}$ із приведеною ефективною.

3. Зроблений аналіз зв'язку між періодами осциляцій Келдиша-Франца ΔE_m і електрооптичною енергією ћ , який дозволяє визначити величину ћө безпосередньо із самого спектру електровідбивання.

4. Значення феноменологічного параметру уширення Г для епітаксійної плівки GaP (111) з концентрацією електронів $n = 3 \cdot 10^{16} \text{ см}^{-3}$, яке дорівнює 0,034 eB свідчить про її високу досконалість. Отримане значення рухливості 370 см²/В·с в плівках GaP при концентрації електронів 3·10¹⁶ см⁻³ підтверджує цей висновок.

5. Експериментальні і теоретичні результати досліджених спектрів електровідбивання свідчать про ефективне використання осциляцій Келдиша-Франца для визначення фізичних параметрів та області параметрів просторового заряду приповерхневого шару напівпровідникових матеріалів.

- [1] В.А. Тягай, О.В. Снитко. Электроотражение света в полупроводниках. Киев, Наукова думка, 302с., (1980).
- [2] Ю.В. Воробъев, В.Н. Добровольский, В.И. Стриха Методы исследования полупроводников. Киев, Выща школа, 232с., (1988).
- [3] А.О. Волков, О.А. Рябушкин Радиочастотно оптический модуляционный спектроскоп для исследования полупроводниковых структур // Приборы и техника эксперимента. 5, сс. 121–125, (2001).
- [4] Р.В. Кузьменко, В.А. Ганжа, Э.П. Домашевская, В. Кирхер, Ш. Хильдебрандт Обобщенная многослоевая модель для количественного анализа электромодуляционных компонент спектров электроотражения и фотоотражения полупроводников в области фундаментального перехода E₀ // ФПП, **34**(9), сс. 1086-1092, (2002).
- [5] М. Кардона Модуляционная спектроскопия. М., Мир, 416с., (1972.)
- [6] М. Кардона Основы физики полупроводников. Москва, Физматлит, 560с., (2002).
- [7] D.E. Aspnes Third Derivative Modulation Spectroscopy with Low-Field Electroreflectance // Surface Science., **37**(2), pp. 418 – 442, (1973).
- [8] S.P. Pond, P. Handler Flatband Electroreflectance of Gallium Arsenide. II. Comparison of Theory and Experiment // Phys. Rev. B., 8(6), pp. 2869 - 2879 (1973).
- [9] А.И. Ансельм Введение в теорию полупроводников. М., Наука, 616с., (1978).

- [10] A. Hamnett, J. Gilman, R.A. Batchelor Theory of electroreflectance and photoreflectance of semiconductors // Electrochimica Acta. 37(5), pp.949 –956, (1992).
- [11] D. E. Aspnes, A.A. Studna Schottky Barrier Electroreflectance: Application to GaAs // Phys. Rev. B., 7(10), pp. 4605-4625, (1973).
- [12] D.E. Aspnes Band nonparabolicities, broadening and internal field distributions: The spectroscopy of Franz-Keldysh oscillations // Phys. Rev. B, 10(10), pp. 4228 4238, (1974).
- [13] С.А. Груша, А.М. Евстигнеев, Р.В. Конакова, Ю.А. Тхорик, А.Н. Красико, П.А. Генцар, О.В. Снитко Влияние γ - радиации на спектры электроотражения эпитаксиальных пленок *n*-GaP // Поверхность., 6, сс. 155 - 157, (1990).
- [14] О.Ю. Борковская, С.А. Груша, Н.Л. Дмитрук, А.М. Евстигнеев, Н. А. Клебанова, Р.В. Конакова, А.Н. Красико, К.А. Исмаилов, И.К. Синищук, М.Е. Лисогорский Структурно примесное упорядочение под действием малых доз проникающей радиации // ЖТФ.,55(10), сс. 1977 – 1982, (1985).
- [15] А.М. Евстигнеев, П.А. Генцар, С.А. Груша, Р.В. Конакова, А.Н. Красико, О.В. Снитко, Ю.А. Тхорик Столкновительное уширение оптических спектров и его связь с подвижностью // ФТП., 21(6), сс. 1138 – 1141, (1987).

P.O. Gentsar, O.I. Vlasenko, O.V. Stronski

The Control of Structural Perfection of n-GaP Epitaxy Film by a Modulation Spectroscopy Method of Electroreflection

V.E. Lashkarev Institute of semiconductors physics, NAN of Ukraine Kiev - 028, prospect Nauki, 45, e-mail: gentsar@isp.kiev.ua

The electroreflection spectra of n-GaP (111) homoepitaxy films with electron concentration n = 10^{16} -5· 10^{16} sm⁻³ were investigated by means of electrolitic technique in a spectral range 2,5-3,2 eV. The measurements are carried out at the room temperature in non-polarized light (for a surface (111) polarizing dependence is absent). From the quantitative analysis of electroreflection spectra the magnitudes of physical parameters of spatial charge of surface layer of a researched material were obtained: energy of optical transitions E_0 (transition $\Gamma_{8V} - \Gamma_{6C}$) i $E_0+\Delta_0(\Gamma_{7v} - \Gamma_{6c})$, electrooptical energy $\hbar\theta$, superficial electrical field F_s , phenomelogycal parameter of broadening Γ , the energy time of charge carries relaxation τ , relative phase factor ψ , extension of wave function oscillations of a quantummechanical particle $\lambda_{K\Phi}$ with given effective mass μ at the given electrical field F_s , the value of electronic mobility μ_e in the minimum of conductivity zone Γ_{6C} . The analysis of connection between the Franc-Keldish oscillation periods ΔE_m and electrooptical energy $\hbar\theta$ was executed. The experimental spectra of electroreflection of n-GaP (111) homoepitaxy films are well described by the one-electronic theory by means of obtained electronic parameters.