УДК 618.029.5:669.536.21

ISSN 1729-4428

Г.О. Сіренко, Л.В. Базюк

Вплив параметрів графітів на зносостійкість композиційних матеріалів на основі ароматичного поліаміду

Прикарпатський національний університет імені Василя Стефаника, вул. Шевченка 57, м. Івано-Франківськ, 76000, Україна

Досліджено залежність зносостійкості композиційних матеріалів на основі ароматичного поліаміду від параметрів теоретичного розподілу частинок графітів у порівнянні з дискретним розподілом.

Ключові слова: композит, ароматичний поліамід, графіт, зносостійкість, параметри гамма-розподілу.

Стаття поступила до редакції 23.10.2006; прийнята до друку 15.03.2007.

Вступ

Числовий або об'ємний (масовий) розподіл Вейбулла або гамма (у)-розподіл за довжинами вуглецевих волокон [1], визначає антифрикційні властивості композиційних матеріалів [2]. Навіть від нормального закону розподілу перехід вуглецевих волокон за довжинами до закону Вейбула або у-закону значно впливає на ці властивості [2]. У роботі [3] виявлено вплив природи графітів на теплофізичні властивості композиційних матеріалів на основі поліамідів. Для дисперсних графітів, які мають різний розподіл розмірів частинок в кількох напрямках і зольність, яка змінюється в широкому діапазоні, необхідно визначити їх параметри розподілу за розмірами та залежність фізикомеханічних властивостей i зносостійкості композитних полімерних матеріалів від розмірів частинок графітів та їх зольності.

Мета даної роботи полягала у тому, щоби знайти залежність зносостійкості композиційних матеріалів на основі ароматичного поліаміду від параметрів розподілу графітів (наповнювача).

I. Експериментальна частина

Об'єктом дослідження були композиційні матеріали на основі ароматичного поліаміду фенілон С-2 (продукт поліконденсації метафенілендіаміна і дихлорангідридів ізофталевої (60 %) і терефталевої (40 %) кислот [4]), наповнені природними графітами різних марок, які відрізнялися вмістом золи, вологістю і тонкістю мливу (дисперсністю) (табл.1). Зразки для дослідження діаметром 10мм і висотою 15 мм були виготовлені за технологією [4,5] пресуванням порошку композиції полімеру і графіту.

визначається так [1, 2]:

Методи досліджень

Лінійний аналіз. Завдання визначення розподілу частинок за розмірами зводиться до лінійного аналізу [1,2]. Для лінійного аналізу частинок графітів і полімеру застосовували автоматичний аналізатор відображень мікрооб'єктів "Морфоквант" із обчислювальною машиною EC-5060. "Морфоквант" був налагоджений на максимальну кількість кроків 512, мінімальний крок 0,2 мкм, діапазон кроків при скануванні 512*512 і кількість різних ступенів тонів 128. При цьому відносна похибка лінійних розмірів становила 0,2 %.

Програма забезпечувала аналіз 250 частинок за одну пробу (кількість проб для одного виду досліджень – 20-25). Величина відносної квадратичної помилки при обчисленні частинок, що обумовлена випадковим розподілом їх в просторі, дорівнює:

$$\delta = \frac{1}{\sqrt{N}} \cdot 100\%, \qquad (1)$$

де *N* = 5000-6250 – загальна кількість підрахованих частинок.

Таким чином, відносна квадратична похибка обчислення частинок була в межах $\delta = 1,41-1,27$ % відповідно.

Для такої великої вибірки гіпотезу про підпорядкування емпіричного розподілу певному ймовірному закону розподілу графітів за розмірами перевіряли за допомогою критеріїв відповідності χ^2 і ω^2 [6–9]. Обробка результатів експериментальних даних показала, що вони підпорядковані теоретичному γ –розподілу.

Теоретичний розподіл. Щільність ймовірностей числового у-розподілу за лінійними розмірами частинок графіту і полімеру

Таблиця 1

				Дискретний розподіл					
		Вміст	Вологість	тонкість млива					
Графіт	Марка	золи, %	%			основна			
				залишок,	фракція,	фракція,			
				мкм (%)	МКМ	мкм (%)			
Тигельний	ГТ-1	7,0	10	200(>75)	100-600	200(75)			
Тигельний	ГТ-2	8,5	10	200(>70)	100-600	200(70)			
Елементний	ГЕ-3	10,0	1	160(<10)	10-200	63(>45)			
Елементний	ГЕ-4	14,0	1	160(<10)	10-200	63(>45)			
Кристалічний	ГЛ-1	13,0	1	160(<40)	30-400	100(>50)			
ливарний	(КЛЗ)								
Електро-вугільний	ЕУЗ-М	0,5	0,2	71(<5)	10-80	45(75-90)			
Електро-вугільний	ЕУЗ-Е	5,0	0,2	160(<20)	30-400	-			
Спеціальний	ГСМ-1	0,1	0,2	200(>70)	100-600	200(>70)			
малозольний									
	EAR 1	0.5		1(0(-50)	20,400	(2)(50,00)			
Акумуляторний	I AK-I	0,5	1	160(<50)	30-400	63(50-90)			
Акумуляторний	I AK-2	1,0	1	160(<50)	30-400	63(60-95)			
Акумуляторний	TAK-3	2,0	1	160(<50)	30-400	63(60-95)			
Олірцерий	ГК_1	1.0	0.2	63(<0.5)	3-40				
Олівцевий	ГК-1 ГК-2	3.0	0,2	63(<1.0)	3-40				
Олівцевий	ТК-2 ГК-3	5,0	0,2	63(<1,0)	5-50				
Оливцевии	1 K-3	5,0	0,2	03(<1,0)	5-50				
Колоїлний сухий	C-1	15	0.5	63(<0.5)	1-80	1-8			
колондний сухий	C-1	1,5	0,5	05(~0,5)	1-00	1-0			
Колоїлний сухий	C-2	2.0	0.5	63(<0.5)	1-80	1-8			
restorquinin oʻj kini	02	-,-	0,0	00(10,0)	1.00	10			
Колоїлний сухий	C-3	2.5	0.5	63(<0.5)	1-80	1-8			
	0.0	_,0	•,•		1.00				
		1							

n	•		•				•	•				2			
·).	N TTT TT1	OTT		TODOLOTOI	THOMADOTION	100	2000001007	HOOH	TATAOTTTA	THOO	himin	JODOTIOT	DOT RODO	100 11	ODITITO
	льни	СТБ		параметри	пискретного))(3311071111V	лосни	іжених	110/0	DELIR	эавальет	зеького.	1107/14	овиша
	JULDILL'	• • •	•	THE PROPERTY PIL				AC		1 1 1 1 1 1 1		O WD WILD CI		PVA	O DIIII W

* за даними виробника

$$\varphi_2(x) = \frac{\lambda^{\theta}}{\Gamma(\theta)} l^{\theta-1} \exp(-\lambda x), \ x \ge 0,$$
(2)

де λ , θ – параметри γ –розподілу.

Математичне сподівання $E_2(x)$ і дисперсія $\sigma_2^2(x)$ числового γ -розподілу за лінійними розмірами частинок визначається за формулами [1, 2]:

$$E_2(x) = \frac{\theta}{\lambda}; \tag{3}$$

$$\sigma_2^2(x) = \frac{\theta}{\lambda^2} \,. \tag{4}$$

Щільність ймовірностей об'ємного (масового) урозподілу за лінійними розмірами частинок визначається за [1,2] так:

$$p_2(x) = \frac{\lambda^{\theta+1}}{\Gamma(\theta+1)} x^{\theta} \exp(-\lambda x), \ x \ge 0, \ (5)$$

$$\mu e \qquad M_2(x) = E_2(x) + \frac{1}{\lambda} = \frac{\theta}{\lambda} + \frac{1}{\lambda} = \frac{\theta+1}{\lambda}$$
(6)

математичне сподівання об'ємного (масового) у-розподілу;

$$D_{2}(x) = \sigma_{2}^{2}(x) + \frac{1}{\lambda^{2}} = \frac{\theta}{\lambda^{2}} + \frac{1}{\lambda^{2}} = \frac{\theta + 1}{\lambda^{2}}$$
(7)

дисперсія об'ємного (масового) у-розподілу.

Показники асиметрії *As* та ексцесу *Ex* γ-розподілу визначаються за формулами [6]:

$$As = \frac{2}{\sqrt{\theta}}; \ Ex = \frac{6}{\theta}.$$
 (8)

Антифрикційні властивості визначали за такою схемою фрикційного контакту без мащення (режим змінних граничних навантажень): З зразки діаметром 10 ± 0.5 мм і висотою 15 ± 0.5 мм з кінцівкою у вигляді напівсфери з радіусом 6,35 мм контактували сферами з поверхнею сталі 45

термообробленою (HB = 4,5 \pm 0,2 ГПа,

 $R_a = 0.20 \pm 0.3$ мкм) при нормальному навантаженні на зразок $N_i = 100$ Н, швидкості ковзання $\upsilon = 0.3$ м/с, температурі T = 323 \pm 1 К. Шлях тертя першого етапу $S_1 = 0.4$ км (питоме навантаження змінювалося від $p_0 \approx HB$ полімерного зразка до $p_1 \approx 30-40$ МПа) і другого етапу $S_2 = 416$ км (питоме навантаження

Вплив параметрів графітів на зносостійкість композиційних матеріалів ...

	Параметри у-розподілу							
Mananian	^	0		П	ериметр, <i>L</i>			
матеріал	λ, _1	θ	As	Ex	$M_2(x),$	$D_2(x),$	$E_2(x),$	σ_2 (<i>x</i>), MKM
	MKM				MKM	MKM ²	MKM	
графіт ЭУЗ-М	0,0560	5,313	0,868	1,129	112,732	2013,07	94,875	41,16
графіт КЛЗ	0,0051	2,500	1,265	2,400	686,28	134563,63	490,196	310,03
(ГЛ-1)								
графіт ГЭ-4	0,0071	1,819	1,483	3,299	397,04	55921,44	256,197	189,96
графіт ЭУЗ-Э	0,0157	1,680	1,543	3,571	170,701	10872,65	107,006	82,56
фенілон С-2	0,0910	2,200	1,348	2,727	351,648	38642,68	241,758	162,99
(партія 313)								
фенілон С-2	0,0110	1,700	1,534	3,529	245,455	22314,05	154,545	118,53
(партія 299)	ŕ	· · ·	·	·	ŕ	-	ŕ	ŕ
			ефекти	вний діаме	тр, <i>D</i>			
графіт ЭУЗ-М	0,1560	4,650	0,927	1,290	36,218	232,17	29,808	13,82
графіт КЛЗ	0,0130	2,050	1,397	2,927	234,615	18047,34	157,692	110,14
(ГЛ-1)	,	,	,	,	,	,	,	,
графіт ГЭ-4	0,0186	1,530	1,617	3,922	136,022	7312,98	82,258	66,50
графіт ЭУЗ-Э	0,0490	1,531	1,616	3,919	51,633	1054,14	31,245	25,25
фенілон С-2	0,0315	2,460	1,275	2,439	109,841	3487,02	78,095	49,79
(партія 313)	<i>,</i>	<i>,</i>	,	,	,	,	,	,
фенілон С-2	0,0380	1,850	1,470	3,243	75,000	1973,68	48,684	35,79
(партія 299)	,	,	,	,	,	,	,	,
						•		
]	ширина, <i>d</i>				
графіт ЭУЗ-М	0,3380	4,750	0,918	1,263	17,012	50,33	14,053	6,45
графіт КЛЗ	0.0284	2.180	1.355	2,752	111.972	3942.67	76,761	51.99
(ГЛ-1)	- ,	,	<i>)</i>	· · ·	<u>y</u>	,		
графіт ГЭ-4	0.0880	2.610	1.238	2.299	41.022	466.17	29.659	18.36
графіт ЭУЗ-Э	0,0810	1,311	1,747	4,577	28,531	352,23	16,185	14,14
фенілон С-2	0,0942	2,830	1,189	2,120	40,658	431.62	30,042	17.86
(партія 313)	-,	,	,	,	.,	,	, •	
фенілон С-2	0.0810	1.800	1.490	3.330	34.568	426.76	22.222	16.56
(партія 299)	5,0010	1,000	1,170	5,550	21,200	.20,70	,	10,00
(<u>r</u>)	L			L			L	

Параметри у-розподілу графітів і ароматичного поліаміду фенілон С-2

змінювалося від $p_1 \approx 30-40$ МПа до $p_2 \approx 20-25$ МПа). допомогою профілометра–профілографа ВЭН «Калибр» моделі 201 за R_a .

II. Результати та обговорення

Результати досліджень параметрів розподілу за периметром, шириною і діаметром частинок графітів і полімеру фенілон С-2 приведені в табл. 2.

На рис. 1 приведено щільність ймовірності числового гамма-розподілу периметру частинок.

Як видно з рис. la, основна частина периметру частинок графіту ЕУЗ-М (крива 1) зосереджена в ділянці 70-110 мкм, а графіту ЕУЗ-Е (крива 2) – в ділянці 20-80 мкм. За даними дискретного розподілу (табл. 1) електровугільні графіти марок ЕУЗ-Е та ЕУЗ-М мають основну частину розподілу в ділянках 30-400 мкм і 10-80 мкм відповідно.

Як видно з рис. 16, основна частина периметру частинок основної фракції графіту ГЛ-1 (КЛЗ) Шорсткість поверхні визначали за зміщена в ділянку великих величин 200-500мкм (крива 1). За даними дискретного розподілу (табл. 1), основна частина розподілу розміщена в ділянці 30-400 мкм. Основна частина розподілу графіту ГЕ-4 (крива 2) зосереджена в ділянці малих величин 60-180мкм, яка є вужча, ніж за дискретного розподілу (10-200 мкм).

Таблиця 2

На рис. 1в зображено щільність ймовірності числового *γ*-розподілу периметру частинок ароматичного поліаміду.

Як видно з рис. 1в, розподіл залежить від технологічної партії синтезу фенілону С-2: для партії 313 основна частина розподілу зосереджена на ділянці 80-220 мкм (крива 1), для партії 299 (крива 2) – на ділянці значень 50-140мкм.

При порівнянні рис. 1в з рис. 1а і 16 видно, що частинки графітів за периметром мають близькі значення з частинками ароматичного поліаміду. Виняток становлять тільки частинки графіту марки

Рис. 1. Залежність щільності ймовірності числового γ–розподілу периметру частинок графіту і ароматичного поліаміду: а – ЕУЗ-М (1); ЕУЗ-Е (2); б – ГЛ-1 (КЛЗ) (1); ГЕ-4 (2); в – фенілон С-2 (партія 313) (1); фенілон С-2 (партія 299) (2).

Рис. 2. Залежність щільності ймовірності числового гамма-розподілу ефективного діаметру частинок графіту і ароматичного поліаміду: а – ЕУЗ-М (1); ЕУЗ- Е (2); б – ГЛ-1 (КЛЗ) (1); ГЕ-4 (2); в – фенілон С-2 (партія 313) (1); фенілон С-2 (партія 299) (2).

Рис. 3. Залежність щільності ймовірності числового γ–розподілу ширини частинок графіту і ароматичного поліаміду: а – ЕУЗ-М (1); ЕУЗ-Е (2); б – ГЛ-1 (КЛЗ) (1); ГЕ-4 (2); в – фенілон С-2 (партія 313) (1); фенілон С-2 (партія 299) (2).

ГЛ-1 (КЛЗ), які є більші від частинок ароматичного поліаміду.

На рис. 2 показано залежність щільності ймовірності числового γ-розподілу від ефективного діаметру частинок.

Як видно з рис. 2а, основна частина діаметру графіту ЕУЗ-М (крива 1) зосереджена в ділянці 20-40мкм, а графіту ЕУЗ-Е (крива 2) – в ділянці 5-30мкм. За даними дискретного аналізу (табл.1) графіти марок ЕУЗ-М та ЕУЗ-Е мають основну частину діаметру в ділянках 10-80мкм і 30-400мкм

відповідно. При порівнянні розрахункових результатів з даними дискретного аналізу (табл.1) можна побачити, що ділянка розрахункових значень значно вужча.

Як видно, з рис. 26 основна частина діаметру частинок основної фракції графіту ГЛ-1 (КЛЗ) зміщена в ділянку 50-140 мкм (крива 1). За даними дискретного аналізу (табл. 1) основна частина діаметру частинок розміщена в ділянці 30-400мкм, яка є значно ширша, ніж за розрахунковими даними. Основна частина діаметру частинок графіту ГЕ-4 (крива 2) зосереджена в ділянці 20-60 мкм, яка є вужча, ніж за даними дискретного аналізу (10-200 мкм).

На рис. 2в зображено залежність щільності

ймовірності числового γ-розподілу від ефективного діаметру частинок ароматичного поліаміду фенілон C-2.

Як видно з рис. 2в, основна частина діаметру частинок фенілону С-2 (партії 313) знаходиться в межах 30-80 мкм (крива 1), для фенілону С-2 (партії 299) – 20-60 мкм. Порівнюючи рис. 2в з рис. 2а і 26 можна зробити висновок, що частинки графітів і ароматичного поліаміду за ефективним діаметром приблизно мають однакові середні значення.

На рис. 3 показано щільність ймовірності числового гамма-розподілу ширини частинок.

Як видно з рис. За, основна частина ширини частинок графіту ЕУЗ-М (крива 1) зосереджена в ділянці 10-15 мкм, тоді як за даними дискретного аналізу ця ділянка значно ширша (10-80мкм). Для графіту ЕУЗ-Е (крива 2) основна частина ширини частинок зміщена в ділянку малих значень 2-12 мкм, відносно даних дискретного емпіричного розподілу (30-400 мкм).

Як видно з рис. Зб основна частина ширини частинок основної фракції графіту ГЛ-1 (КЛЗ) зміщена в ділянку 30-70мкм (крива 1). За дискретним емпіричним розподілом основна частина ширини частинок розміщена в ширшій ділянці (30-400мкм). Основна частина ширини частинок графіту ГЕ-4 (крива 2) зосереджена в ділянці малих величин 1030мкм, яка є значно вужча, ніж за даними дискретного емпіричного розподілу (10-200 мкм).

На рис. Зв зображено залежність щільності ймовірності числового гамма-розподілу від ширини частинок ароматичного поліаміду фенілон С-2. Аналіз цих результатів приводить до висновків, що основна частина ширини частинок розміщена в межах 15-30мкм для партії фенілону С-2 313 (крива 1) і 10-20мкм для партії 299 (крива 2), тобто ароматичний поліамід будь-якої партії має малі розміри за шириною.

При порівнянні з рис. За і Зб видно, що всі графіти теж мають основну частину ширини частинок на ділянці малих значень. Виняток становить лише графіт ГЛ-1 (КЛЗ), який має основну частину ширини частинок у ділянці середніх значень 30-70 мкм.

На основі отриманих результатів з метою прогнозування ділянки застосування і експлуатаційних властивостей шукали лінійний кореляційний зв'язок між відносною зносостійкістю (I_{Π}/I_K) на першому (S_1) і на другому (S_2) етапах тертя і периметром (як найбільш інформативним параметром) частинок графітів у композиті. Вибірковий коефіцієнт кореляції обчислювали за формулою:

$$r_{posp} = \frac{\sum_{i=1}^{5} (x_i y_i) - N \cdot \overline{x} \cdot \overline{y}}{\sqrt{\sum_{i=1}^{5} (y_i^2) - N \cdot (\overline{y})^2} \cdot \sqrt{\sum_{i=1}^{5} (x_i^2) - N \cdot (\overline{x})^2}}$$
(9)

де у = (I_{Π} / I_{K}) – відношення інтенсивності об'ємного зносу полімеру I_{Π} до цього ж показника композиту (відносна зносостійкість композиту);

 $\mathbf{x} = \mathbf{\theta}; \lambda; \mathbf{E}_2(l); \mathbf{\sigma}_2(l)$

Критичне значення коефіцієнта кореляції знаходили за [9]:

 $\mathbf{r}_{\text{KD.}} \{ \alpha = 0,05; f = N - 2 = 2 \} = 0,950.$

Розрахунки коефіцієнтів кореляції дали такі результати.

На першому етапі тертя:

$$\begin{split} I_{\Pi}/I_{K} &\sim \theta & r_{po3p.1} = -0,48396; \\ I_{\Pi}/I_{K} &\sim \lambda & r_{po3p.2} = -0,66192; \\ I_{\Pi}/I_{K} &\sim E_{2}(x) & r_{po3p.3} = 0,6126; \\ I\Pi/IK &\sim \sigma 2(x) & rpo3p.4 = 0,6976; \\ Ha \ другому \ етапi \ тертя: \\ I_{\Pi}/I_{K} &\sim \theta & r_{po3p.5} = -0,7942 \end{split}$$

$$\begin{array}{ll} I_{\Pi}/I_{K}\sim\!\lambda & r_{po3p.6}=\!-0.91437\\ I_{\Pi}/I_{K}\sim\!E_{2}(x) & r_{po3p.7}=0.6598\\ I_{\Pi}/I_{K}\sim\!\sigma_{2}(x) & r_{po3p.8}=0.7725 \end{array}$$

У даному випадку $r_{\kappa p} > |r_{posp.}|$, то нульова гіпотеза H_0 при рівності нулю генерального коефіцієнта кореляції не відкидається з p = 0.95, тобто немає підстав вважати, що між I_{Π}/I_K і θ_i , λ_i , $E_2(l)_i$; $\sigma_2(l)_i$ (де i = 1-8) є лінійний зв'язок. Ступінь лінійності знайдемо, ввівши поняття коефіцієнта лінійності (або нелінійності) математичної моделі 1-го порядку:

$$\xi = \left| \frac{r_{posp.}}{r_{sp}} \right|. \tag{11}$$

Рис. 4. Залежність відносної зносостійкості композиту I_{Π}/I_{K} від параметрів розподілу частинок графітів θ_i , λ_i , $E_2(l)_i$; $\sigma_2(l)_i$ для першого $S_1 = 0.4$ км (крива1) і другого $S_2 = 4.16$ км (крива 2) етапу тертя.

Коефіцієнт лінійності дорівнює: $\zeta_1 = 0,5094; \qquad \zeta_5 = 0,8392$

Таблиця 3

D	••	•	•	• •			
PONTI TOTIA	VONATITITITOTO	9119 T19V		MILLO TI LIOI	MODEDI TI	ACTI OI CTOHOIII	
т сэультати	корслициного	апальту	для полно	MINAJIDRUI	модолги		
			r • · · ·		- / 1		

		2
Вид зв'язку	Рівняння	\mathbb{R}^2
	$S_1 = 0 - 4 \kappa M$	
$I_{\Pi}/I_{K} \sim \theta$	$I_{\Pi}/I_{K} = 62,459\theta^{3} - 598,78\theta^{2} - 1690,4\theta - 1443,5$	1
$I_{\Pi}/I_{K}\sim\lambda$	$I_{\Pi}/I_{K} = 2 \cdot 10^{7} \theta^{3} - 10^{7} \theta^{2} - 17414 \theta - 44,686$	1
$I_{\Pi}/I_{K} \sim E_{2}(x)$	$I_{\Pi}/I_{K} = -4 \cdot 10^{-6} \theta^{3} + 0,0027 \theta^{2} - 0,4317 \theta - 22,275$	1
$I_{\Pi}/I_{K} \sim \sigma_{2}(x)$	$I_{\Pi}/I_{K} = -1.10^{-5}\theta^{3} + 0.0047\theta^{2} - 0.4619\theta - 1443.5$	1
	S ₂ = 4–16км	
$I_{\Pi}/I_{K} \sim \theta$	$I_{\Pi}/I_{K} = 196,52\theta^{3} - 1890,7\theta^{2} - 5349,6\theta - 4456,9$	1
$I_{\Pi}/I_{K}\sim\lambda$	$I_{\Pi}/I_{K} = 5 \cdot 10^{7} \theta^{3} - 4 \cdot 10^{6} \theta^{2} - 52983 \theta - 13,194$	1
$I_{\Pi}/I_{K} \sim E_{2}(x)$	$I_{\Pi}/I_{K} = 6 \cdot 10^{-5} \theta^{3} - 0.0542 \theta^{2} + 13.763 \theta - 801.15$	1
$I_{\Pi}/I_{K} \sim \sigma_{2}(x)$	$I_{\Pi}/I_{K} = -1.10^{-6}\theta^{3} - 0.005\theta^{2} + 1.9805\theta - 4.1166$	1

Перевіримо наявність лінійного зв'язку між I_{Π}/I_{K} і θ_i , λ_i , $E_2(l)_i$; $\sigma_2(l)_i$ за більш точним співвідношенням:

$$\begin{aligned} z_{po3p.} &= \left| \frac{1}{2} \ln \frac{1+r}{1-r} \right| \tag{13} \end{aligned}$$

$$\begin{aligned} z_{po3p.1} &= \left| \frac{1}{2} \ln \frac{1-0,48396}{1+0,48396} \right| = \left| \frac{1}{2} \ln \frac{0,51604}{1,48396} \right| = \left| \frac{1}{2} \ln 0,3477 \right| = \left| -0,5282 \right| ; \end{aligned}$$

$$\begin{aligned} z_{po3p.2} &= \left| \frac{1}{2} \ln \frac{1-0,66192}{1+0,66192} \right| = \left| \frac{1}{2} \ln \frac{0,33808}{1,66192} \right| = \left| \frac{1}{2} \ln 0,2034 \right| = \left| -0,7962 \right| ; \end{aligned}$$

$$\begin{aligned} z_{po3p.3} &= \left| \frac{1}{2} \ln \frac{1+0,6126}{1-0,6126} \right| = \left| \frac{1}{2} \ln \frac{1,6126}{0,3874} \right| = \left| \frac{1}{2} \ln 4,1626 \right| = \left| 0,7131 \right| ; \end{aligned}$$

$$\begin{aligned} z_{po3p.4} &= \left| \frac{1}{2} \ln \frac{1+0,6976}{1-0,6976} \right| = \left| \frac{1}{2} \ln \frac{1,6976}{0,3024} \right| = \left| \frac{1}{2} \ln 5,6138 \right| = \left| 0,8626 \right| ; \end{aligned}$$

$$\begin{aligned} z_{po3p.5} &= \left| \frac{1}{2} \ln \frac{1-0,91437}{1+0,91437} \right| = \left| \frac{1}{2} \ln \frac{0,08563}{1,91437} \right| = \left| \frac{1}{2} \ln 0,0447 \right| = \left| -1,5536 \right| ; \end{aligned}$$

$$\begin{aligned} z_{po3p.6} &= \left| \frac{1}{2} \ln \frac{1+0,6598}{1-0,6598} \right| = \left| \frac{1}{2} \ln \frac{1,6598}{0,3402} \right| = \left| \frac{1}{2} \ln 3,8789 \right| = \left| 0,7924 \right| ; \end{aligned}$$

$$\begin{aligned} z_{po3p.8} &= \left| \frac{1}{2} \ln \frac{1+0,7725}{1-0,7725} \right| = \left| \frac{1}{2} \ln \frac{1,7725}{0,2275} \right| = \left| \frac{1}{2} \ln 7,7912 \right| = \left| 1,0265 \right| . \end{aligned}$$

Розрахуємо добуток ($z_{raбл.} \cdot \sigma_z$), де $z_{raбл.} \in \kappa$ вантиль випадкової величини для ймовірності р: $z_p \{p = 1 - \frac{\alpha}{2} = 0,975\} = 1,96$ [9], а середнє квадратичне

відхилення для функції *z* перетворення Фішера $r_{1,2}$ $\sigma_z = \frac{1}{\sqrt{N-3}} = 1$, де N = 4 – кількість параметрів, то

 $(z_{p.} \sigma_{z.}) = 1,96$. Так як $|z_{posp.}| < (z_{p.} \sigma_{z.})$, то приймаємо гіпотезу про те, що немає лінійного зв'язку між інтенсивністю зношування і периметром частинок графітів, що повністю відповідає першому методу дослідження лінійного зв'язку. *Ступінь нелінійності* математичної моделі між І_П/І_К і θ_i , λ_i , $E_2(x)_i$; $\sigma_2(x)_i$, де i=1-8, дорівнює

$$\xi' = \left| \frac{(z_p \cdot \sigma_z)}{z_{posp.}} \right| :$$
(14)

$$_{1} = 3,7107; \qquad \xi_5 = 1,8103; \\ _{2} = 2,4617; \qquad \xi_6 = 1,2616; \\ _{3} = 2,7486; \qquad \xi_7 = 2,4735; \\ _{4} = 2,2722; \qquad \xi_8 = 1,9094.$$

Шукали нелінійний зв'язок між I_{Π}/I_{K} і θ_{i} , λ_{i} , $E_{2}(l)_{i}$; $\sigma_{2}(l)_{i}$ для i = 1-8 [де i див. (9)] у формі:

$$y = b_0 \ln\left(x\right) + b_1 \tag{16}$$

$$y = b_0 \cdot x^{\nu_1} \tag{17}$$

$$y = b_0 \cdot e^{b_1 \cdot x} \tag{18}$$

$$y = b_0 + b_1 x + b_{11} x^2 \tag{19}$$

$$y = b_0 + b_1 x + b_{11} x^2 + b_{111} x^3$$
(20)

де $y = I_{\Pi}/I_{K}$ – відношення інтенсивності об'ємного зносу полімеру I_{Π} до цього ж показника композиту (відносна зносостійкість композиту);

 $x = \theta_i, \lambda_i, -$ параметри γ -розподілу;

 $x = E_2(l)_i; \sigma_2(l)_i - математичне сподівання і середнє квадратичне відхилення відповідно.$

Для першого етапу тертя $S_1 = 0.4$ км для виду зв'язку $I_{\Pi}/I_K \sim \theta_i \quad R^2$ змінюється в межах 0,16-1; для зв'язку $I_{\Pi}/I_K \sim \lambda_i \quad R^2$ змінюється в межах 0,50-1; для зв'язку $I_{\Pi}/I_K \sim E_2(l)_i R^2$ змінюється в межах 0,57-1; для зв'язку $I_{\Pi}/I_K \sim \sigma_2(x)_i \quad R^2$ змінюється в межах 0,60–1.

Для другого етапу тертя S₁ = 4-16км для виду зв'язку I_П/I_K ~ $\theta_i R^2$ змінюється в межах 0,55-1; для зв'язку I_П/I_K ~ $\lambda_i R^2$ змінюється в межах 0,88-1; для зв'язку I_П/I_K ~ E₂(*I*)_i R² змінюється в межах 0,44-1; для зв'язку I_П/I_K ~ $\sigma_2(x)_i R^2$ змінюється в межах 0,60-1. Самий тісний зв'язок існує між вказаними видами рівнянь, коли R² ≈ 1. Рівняння (19) і (20) найбільше відповідають такій вимозі (табл. 3).

На рис. 4 показано залежність відносної зносостійкості I_{Π}/I_{K} від параметрів розподілу частинок графіту θ_{i} , λ_{i} , $E_{2}(l)_{i}$; $\sigma_{2}(l)_{i}$ для першого S_{1} і другого S_{2} етапів тертя.

Як видно з рис. 4а, відносна зносостійкість композиту на першому етапі тертя (крива 1) незначно змінюється зі зміною θ , на другому етапі тертя (крива 2) відносна зносостійкість композиту зростає, проходячи через максимум ($\theta = 3-4$) і тоді різко зменшується.

Як видно з рис. 4б, із зростанням λ відносна зносостійкість композиту зменшується на обох етапах тертя (крива 1,2).

Аналіз рис.4в і 4г приводить до висновків, що відносна зносостійкість композиту на першому етапі тертя (крива 1) із зростанням $E_2(l)_i$; $\sigma_2(l)_i$ майже не змінюється. На другому етапі (крива 2) відносна зносостійкість композиту зростає.

Висновки

1. Частинки графітів за периметром мають близькі значення з частинками ароматичного поліаміду, розподіл частинок якого залежить від технологічної партії синтезу фенілону С-2.

2. Частинки графітів і ароматичного поліаміду за ефективним діаметром приблизно мають однакові середні значення, що визначає композиційність цих матеріалів.

3. Ароматичний поліамід будь-якої партії та всі

графіти мають малі розміри за шириною.

4. Встановлено за результатами кореляційного аналізу, що між інтенсивністю зношування і периметром частинок графітів немає лінійного зв'язку.

Сіренко Г.О. – доктор технічних наук, професор, завідувач кафедри теоретичної і прикладної хімії; Базюк Л. В. – асистент кафедри теоретичної і прикладної хімії.

- [1] Г.А. Сиренко Антифрикционные карбопластики. Техніка, Київ, 195 с. (1985).
- [2] Г.О. Сіренко, О.В. Шийчук. Математичний опис процесу дроблення вуглецевих волокон для наповнених полімерів// *Композиційні полімерні матеріали*, **25**, (1), сс. 49-53 (2001).
- [3] Г.О. Сіренко, В.П. Свідерський, Л.В. Базюк Теплофізичні властивості композиційних матеріалів на основі ароматичного полііміду, наповнених графітами // Полімерний журнал, 27, (4), сс. 272-277 (2005).
- [4] Л.Б. Соколов, В.Д. Герасимов, В.М. Савинов, В.К. Беляков. *Термостойкие ароматические полиамиды*. Химия, Москва. 254 с. (1975)
- [5] Г.А. Сиренко, В.П. Свидерский, В.Д. Герасимов, В.З. Никонов. Антифрикционные термостойкие полимеры. Техника, Киев. 246 с. (1978).
- [6] Г.Корн, Т. Корн. Справочник по математике для научных работников и инженеров. Наука, Москва. 832 с. (1978).
- [7] Л.С. Зажигаев, А.А. Кишьян, Ю.И. Романиков. Методы планирования и обработки результатов физического эксперимента. Атомиздат, Москва. 232 с. (1978).
- [8] М.Н. Степнов Статистическая обработка результатов механических испытаний. Машиностроение, Москва. 232 с. (1972)
- [9] Ю.П. Адлер, Е.В. Маркова, Ю.В. Грановский. Планирование эксперимента при поиске оптимальныхусловий. Наука, Москва. 280 с. (1976).

H.O. Sirenko, L.V. Bazyuk

Influence of Parameters of Graphites on Wearproofity for Composite Materials on the Base of the Aromatic Polyamide

Vasyl Stefanyk' Precarpathian National University, 57, Shevchenko Str., Ivano-Frankivsk, 76000, Ukraine

Dependence between wearproofity and parameters of distribution of graphite for composite materials based on aromatic polyamide is explored.