УДК 621.315.592

ISSN 1729-4428

П.Д. Мар'янчук, Е.В. Майструк

Вплив термообробки на дефектну підсистему кристалів Hg_{1-x}Mn_xTe_{1-y}S_y

Чернівецький національний університет імені Юрія Федьковича, вул. М. Коцюбинського, 2, м. Чернівці, 58012, Україна, E-mail: <u>emaistruk@list.ru</u>

В інтервалі температур T = 77 - 300 К і магнітних полів H \approx 0,5 - 6 кЕ досліджено кінетичні коефіцієнти кристалів Hg_{1-x}Mn_xTe_{1-y}S_y (0 < x \leq 0,14; y = 0,01) до і після термообробки в парах компонент. Встановлено механізми перетворень, які відбуваються в дефектній підсистемі Hg_{1-x}Mn_xTe_{1-y}S_y в процесі термообробки кристалів в парах компонент.

Ключові слова: напівмагнітні напівпровідники, тверді розчини, термообробка, дифузія, кінетичні коефіцієнти, рухливість електронів, магнітоопір, дефектна підсистема, вакансії.

Стаття поступила до редакції 20.11.2006; прийнята до друку 15.12.2007.

Вступ

Дослідження напівмагнітних напівпровідникових твердих розчинів Hg_{1-x}Mn_xTe_{1-v}Se_v [1-4], показали, що вони володіють цікавими властивостями. Тому представляло інтерес розширити діапазон досліджень, тобто одержати кристали твердих розчинів, які містять сірку, і дослідити їх магнітні та кінетичні властивості (одержані нами результати частково висвітлені в [5-9]), а також вплив термообробки на дефектну підсистему кристалів Hg₁-_xMn_xTe_{1-y}S_y. Встановленню (на основі досліджень кінетичних коефіцієнтів) механізмів перетворень, які відбуваються в дефектній підсистемі Hg_{1-x}Mn_xTe_{1-v}S_v в процесі термообробки кристалів в парах компонент, присвячена ця робота.

Дані літературних джерел вказують на можливість існування твердих розчинів $Hg_{1-x}Mn_xTe_{1-y}S_y$, оскільки в системі HgS–HgTe розчинність майже необмежена [10], [11], а в системі MnTe–MnS розчинність обмежена (7 мол.% на основі I і менше 1 мол.% на основі II) [10]. Марганцевмісні тверді розчини, з яких утворюється $Hg_{1-x}Mn_xTe_{1-y}S_y$, існують в широкій області складів: $Hg_{1-x}Mn_xTe$ (0 < $x \le 0,35$) [10] та $Hg_{1-x}Mn_xS$ (0 < $x \le 0,375$) [11].

Тверді розчини $Hg_{1-x}Mn_xTe_{1-y}S_y$ повинні бути напівпровідниками зі змінною в залежності від складу шириною забороненої зони (E_g) і належать до напівмагнітних напівпровідників. Наявність у кристалах атомів Mn з нескомпенсованим магнітним моментом дає можливість контролювати наявність у зразках включень другої фази магнітними методами (зокрема за допомогою вимірів магнітної сприйнятливості кристалів) [6].

I. Експериментальна частина

Кристали $Hg_{1-x}Mn_xTe_{1-y}S_y$ (0 < x < 0,14; y = 0,01) були одержані нами методом Бріджмена. При виборі температури синтезу і вирощування кристалів користувались діаграмами стану твердих розчинів які входять до складу $Hg_{1-x}Mn_xTe_{1-y}S_y$.

Кінетичні властивості кристалів напівмагнітних твердих розчинів $Hg_{l-x}Mn_xTe_{l-y}S_y$ (0 < x \leq 0,14; y = 0.01), досліджували компенсаційним методом на постійному струмі в інтервалі температур Т = 77 -300 К і полів H = 0,5 - 6 кЕ до і після термообробки в парах компонент. Магнітними дослідженнями встановлено відсутність у зразках включень других фаз. Вміст марганцю (x) у зразках уточнювали з допомогою вимірів магнітної сприйнятливості. Однорідність оцінювали зразків на основі вимірювання коефіцієнта Холла (R_H) по довжині зразків.

Типові температурні і польові залежності кінетичних коефіцієнтів, отримані в результаті досліджень кристалів $Hg_{I-x}Mn_xTe_{I-y}S_y$ до і після термообробки в парах компонент, наведено на рис. 1-6.

II. Результати досліджень та їх обговорення

Закономірності у зміні кінетичних коефіцієнтів зразків Hg_{1-x}Mn_xTe_{1-y}S_y дозволяють зробити

Рис. 1. Залежність електропровідності від температури для зразків $Hg_{1-x}Mn_xTe_{1-y}S_y$ (x = 0,06 - 1, x = 0,08 - 2; y = 0,01) до і після відпалу в парах компонент: 1, 2 – до відпалу; 1', 2' – після відпалу в парах сірки; 1'', 2'' - після відпалу в парах ртуті.

припущення, що основний вплив на явища переносу в цих кристалах створюють: вакансії в підгратці ртуті, міжвузловинна ртуть і вакансії в підгратці телуру або сірки (тобто, дефекти, які є найбільш характерними для халькогенідів ртуті і твердих розчинів на їх основі).

Одержані температурні залежності електропровідності (о) мають напівпровідниковий характер (рис. 1). А температурні залежності коефіцієнта Холла (R_H) (рис. 2) свідчать про те, що в зразках Hg_{1-x}Mn_xTe_{1-v}S_v в досліджуваному інтервалі температур присутні і приймають участь в явищах переносу як дірки, так і електрони (тобто електропровідність зразків має змішаний характер). Інверсія знаку коефіцієнта Холла (рис. 2, б, крива 1) або прямування до інверсії при більш низьких температурах (T < 77 K) (рис. 2.) вказують на те, що зразків $Hg_{l-x}Mn_{x}Te_{l-y}S_{y}$ переважає для р-тип електропровідності при низьких температурах, а при високих (Т ≥ 77 К) переважають від'ємні значення коефіцієнта Холла. Це можна пояснити збільшенням у зразках р-типу при підвищенні температури концентрації електронів, які мають рухливість набагато більшу, ніж дірки, що дозволяє навіть при р>п одержувати від'ємні значення R_H.

$$R_{\rm H} = \frac{r(p\mu_p^2 - n\mu_n^2)}{e(p\mu_p + n\mu_n)^2}; \qquad (1)$$

Термообробка зразків $Hg_{1-x}Mn_xTe_{1-y}S_y$ у парах компонент (S або Hg) призводить до зростання електропровідності σ (рис. 1):

$$\sigma = en\mu_n + ep\mu_p \tag{2}$$

Збільшення о можливе з двох причин: у зв'язку з ростом або концентрації носіїв заряду, або їх рухливості в результаті термообробки.

Після термообробки зразків коефіцієнт Холла або стає від'ємним (рис. 2, б) або ($R_{\rm H} < 0$) зростає (по абсолютній величині) при температурах, близьких до $T \sim 77$ K, і майже не змінюється при $T \sim 300$ K (рис. 2, а).

Загальновідомо, що вакансії ртуті є акцепторами, міжвузловинна ртуть – донор, вакансії сірки або телуру – також донори.

Якщо проаналізувати залежність R_н(T) (для різних складів) до і після відпалу зразків у парах сірки або ртуті, то можна встановити закономірність, яка полягає в тому, що температура інверсії зменшується після відпалу і в парах S, і в парах Hg, причому відпал в останніх сильніше зменшує температуру інверсії R_н (рис. 2). Це можна пояснити дифузією атомів ртуті у кристал та заповненням ними разом з міжвузловими атомами ртуті вакансій у власній підгратці, що зменшує концентрацію акцепторів N_a (загальна кількість міжвузлової ртуті донорів може не змінитись, або зросте). Тому для зразків відпалених в парах Нд температура інверсії коефіцієта Холла дуже сильно зменшується, а для деяких зразків Hg_{1-x}Mn_xTe_{1-v}S_v відбувається таке сильне зменшення кількості акцепторів в процесі відпалу, що в інтервалі T = 77 - 300 К коефіцієнт Холла (R_H < 0) тільки зменшується по абсолютній

Рис. 2. Залежність коефіцієнта Холла від температури (H = 5 кE) для зразків Hg_{1-x}Mn_xTe_{1-y}S_y (y = 0,01) до і після відпалу в парах компонент: а) (x = 0,06) 1 – до відпалу; 2 – після відпалу в парах сірки; 3 – після відпалу в парах ртуті; б) (x = 0,08) 1 – до відпалу; 2 – після відпалу в парах ртуті; 3 – після відпалу в парах сірки.

величині з ростом T, не проявляючи ні максимуму на $R_{\rm H} = f(T)$, ні хоча б натяку на насичення при температурах, близьких до T ~ 77 К (рис. 2, а, крива 3), а значить і на інверсію $R_{\rm H}$ при T < 77 К (хоча можливо, що в дійсності така інверсія $R_{\rm H}$ при T << 77 К існує).

Термообробка зразків в парах сірки призводить до дифузії атомів S в кристал і заповнення ними вакансій в підгратці телуру (сірки), що зменшує кількість донорів (N_d), але оскільки ми маємо справу із зразками Hg_{1-x}Mn_xTe_{1-y}S_y p-типу (N_a >> N_d), то і при термообробці зразків в парах S визначальним у зміні R_H буде процес міграції атомів міжвузловинної ртуті по кристалу і заповнення ними вакансій в підгратці ртуті, що призведе до зменшення концентрації дірок), і тому температура інверсії зменшується слабше, ніж у випадку відпалу в парах Hg (рис. 2, а, крива 2). Зменшення кількості міжвузловинної ртуті (донорів) приведе до деякого зменшення N_d і концентрації електронів у зразках.

Оскільки при відпалі зразків в парах S зменшується кількість розсіюючих центрів, якими є вакансії в підгратках і міжвузловинні атоми ртуті, то рухливість носіїв заряду після термообробки повинна сильно збільшуватись.

Саме тому, навіть при зменшенні концентрації електронів і дірок після термообробки, електропровідність кристалів $Hg_{I-x}Mn_xTe_{I-y}S_y$ в результаті їх відпалу в парах компонент дуже зростає внаслідок сильного збільшення рухливостей електронів і дірок.

Термо-е.р.с. (α) для більшості зразків Нg_{*I-x*}Mn_{*x*}Te_{*I-y*}S_{*y*} змінюється від $\alpha > 0$ (при T ~ 90 K) до $\alpha < 0$ (при T ~ 300 K) (або від'ємні значення α зростають по абсолютній величині), що пов'язано із збільшенням концентрації електронів при зростанні температури.

Після термообробки зразків в парах компонент термо-е.р.с. або стає від'ємною, або виникає її інверсія (зміна знаку α) при певній температурі, або зменшуються додатні значення α , або зростають по абсолютній величині від'ємні α . Пояснити це можна зменшенням кількості акцепторів (а значить і концентрації дірок) у зразках при їх термообробці.

Відносний магнітоопір (Др/р) досліджуваних зразків Hg_{1-х}Mn_xTe_{1-v}S_v після термообробки зразків в парах компонент збільшується в декілька разів і його величина стає більшою ніж 300 % при азотних температурах (рис. 4). Магнітоопір досліджуваних зразків Hg_{1-x}Mn_xTe_{1-v}S_v має чітко виражений максимум на температурній залежності до відпалу в парах компонент (рис. 4). Це пояснюється тим, що з ростом температури збільшується концентрація зонних «легких» електронів, внаслідок чого їх внесок в магнітоопір і величина магнітоопору, які обумовлені В основному ларморівським закручуванням саме цих «легких» електронів, повинні теж збільшуватись з ростом Т. Але з ростом Т повинна зменшуватись рухливість «легких» електронів (внаслідок їх розсіювання на теплових коливаннях атомів кристалу), що повинно вести до

Рис. 3. Залежність термо-е.р.с. від температури для зразків $Hg_{1-x}Mn_xTe_{1-y}S_y$ (x = 0,06 - 1, x = 0,08 - 2; y = 0,01) до і після відпалу в парах компонент: 1, 2 – до відпалу; 1', 2' – після відпалу в парах сірки; 1", 2" – після відпалу в парах ртуті.

Рис. 4. Залежність відносного магнітоопору від температури (H = 5 кE) для зразків Hg_{1-x}Mn_xTe_{1-y}S_y (x = 0,06; y = 0,01) до і після відпалу в парах компонент: 1 – до відпалу; 2 – після відпалу в парах сірки; 3 – після відпалу в парах ртуті. ³⁰⁰ $\neg \Delta \rho_{\perp}/\rho$, %

Рис. 5. Залежність відносного магнітоопору від магнітного поля (T = 77 K) для зразків $Hg_{1-x}Mn_xTe_{1-y}S_y$ (x = 0,077, y = 0,01) до і після відпалу в парах компонент: 1 – до відпалу; 2 – після відпалу в парах ртуті; 3 – після відпалу в парах сірки.

послаблення умови сильного поля (ларморівського закручування) для електронів, а отже і до зменшення магнітоопору. Впливом на величину магнітоопору цих протилежних за своєю дією факторів можна пояснити наявність максимуму на експериментальних залежностях $\Delta \rho_1 / \rho = f(T)$.

Відносний магнітоопір досліджуваних зразків майже лінійно залежить від напруженості магнітного поля (рис. 5), що вказує на можливість використання цих матеріалів в якості датчиків для вимірювачів напруженості магнітного поля. Причому термообробка цих матеріалів в парах компонент збільшує величину магнітоопору, що значно покращує параметри таких датчиків.

Інверсія знаку R_H при збільшенні H спостерігається, наприклад, для зразків складу (x \approx 0,08 і y = 0,01) до відпалу (рис. 6) при T = 77 K. Зміну знаку R_H можна пов'язати (як показано вище) з присутністю у зразках щонайменше двох типів носіїв заряду з різною рухливістю і «виморожуванням» (ларморівським закручуванням) більш рухливих носіїв при виконанні для них умови сильного поля ($\mu^2 B^2 >> 1$).

Рис. 6. Залежність коефіцієнта Холла від магнітного поля (T = 77 K) для зразків $Hg_{1-x}Mn_xTe_{1-y}S_y$ (x = 0,08, y = 0,01) до і після відпалу в парах компонент: 1 – до відпалу; 2 – після відпалу в парах ртуті; 3 - після відпалу в парах сірки.

Рис. 7. Залежність рухливості електронів $(n \sim 10^{16} \text{ см}^{-3})$ від вмісту марганцю в $\text{Hg}_{1-x}\text{Mn}_x\text{Te}_{1-y}\text{S}_y$ при T = 77 K (y = 0,01).

Дослідження залежностей $R_H = f(H)$ та $\Delta \rho / \rho = f(H)$ в області відносно високих температур (T = 77-300 K) дають можливість оцінити концентрацію і рухливість «легких» — зонних електронів, оскільки їх концентрація і внесок у величину R_H (враховуючи їх високі рухливості) повинні зростати із збільшенням температури.

Розрахунки параметрів різних типів носіїв заряду в Hg_{1-x}Mn_xTe_{1-y}S_y проведені на основі залежностей $R_{\rm H} = f(H)$ і $\Delta \rho / \rho = f(H)$ в наближенні двох типів носіїв заряду («легкі» та «важкі» носії заряду) за допомогою формул і методик, приведених в [12]. Одержані таким чином залежності рухливостей електронів (µ_n) і дірок (µ_p) від їх концентрації для різних складів «х» дозволили побудувати залежність рухливості носіїв заряду від вмісту марганцю в Hg₁. _xMn_xTe_{1-v}S_v. По максимуму, який спостерігається на залежності $\mu_n = f(x)$ (рис. 7) можна оцінити склад (x), при якому в системі Hg_{1-x}Mn_xTe_{1-y}S_y відбувається перехід безщілинний напівпровідник (БП) звичайний напівпровідник (ЗН). Із рис. 7 видно, що перехід БН-ЗН в Нg_{1-х}Мn_xTe_{1-y}S_v відбувається при $x \approx 0.07$ для T = 77 К. Переходу БН-3Н ($E_g = 0$) відповідають максимальні рухливості і мінімальні ефективні маси електронів, що повинно забезпечувати максимальне ларморівське закручування електронів (а отже і максимальний відносний магнітоопір $\Delta \rho_{\perp} / \rho$) В зразках $Hg_{1-x}Mn_{x}Te_{1-v}S_{v}$ з складом близьким до x = 0,07. Саме тому зразки $Hg_{1-x}Mn_xTe_{1-y}S_y$ з x = 0,06 (рис. 4) i x = 0.077(рис. 5) володіють максимальними значеннями $\Delta \rho_{\perp} / \rho$. А те, що гігантський магнітоопір спостерігається саме після термообробки зразків в парах компонент обумовлено додатковим сильним збільшенням рухливостей носіїв заряду після відпалу внаслідок зменшення кількості розсіюючих центрів (про що йдеться вище).

Висновки

1. Дослідження кінетичних коефіцієнтів показали, що відпал $Hg_{1-x}Mn_xTe_{1-y}S_y$ в парах S і Hg, внаслідок заповнення дифундуючими атомами S і Hg вакансій у своїх підгратках та міграції атомів міжвузловинної ртуті в кристалах призводить до зменшення в процесі відпалу кристалів (як в парах ртуті, так і в парах сірки), кількості акцепторів – вакансій ртуті, які зумовлюють р-тип провідності $Hg_{1-x}Mn_xTe_{1-y}S_y$ (рухливість електронів і дірок при цьому дуже зростає).

2. Встановлено, що перехід безщілинний напівпровідник – звичайний напівпровідник в $Hg_{1-x}Mn_xTe_{1-y}S_y$ відбувається при $x \approx 0,07$ для T = 77 К.

3. Виявлено гігантський відносний магнітоопір (більше 300 %) в $Hg_{1-x}Mn_xTe_{1-y}S_y$ (при складах близьких до переходу БН-ЗН) після термообробки в парах компонент, який обумовлений великими рухливостями носіїв заряду і величина якого вказує на можливість практичного використання цих кристалів.

Мар'янчук П.Д. – доктор фіз.-мат. наук, професор, професор кафедри електроніки і енергетики; *Майструк Е.В.* – аспірант кафедри електроніки і енергетики.

- Н.П. Гавалешко, П.Д. Марьянчук, А.М. Падалко Влияние термообработки на кластерную и дефектную подсистемы кристаллов Hg_{1-x}Mn_xTe_{1-y}Se_y// Изв. вузов. Физика., 36(5), сс.48-51 (1993).
- [2] П.Д. Марьянчук, А.М. Падалко, Вплив температури магнітного поля та термообробки на кінетичні коефіцієнти кристалів Hg_{1-x}Mn_xTe_{1-y}Se_y // УФЖ., **38**(10), сс. 1554-1558 (1993).
- [3] В.А. Кульбачинский, П.Д. Марьянчук, И.А. Чурилов. Электрические и магнитные свойства полумагнитных полупроводников Hg_{1-x}Mn_xTe_{1-y}Se_y // ФТП., **29**(11), сс. 2007-2014 (1995).
- [4] В.А. Кульбачинский, И.А. Чурилов, П.Д. Марьянчук, Р.А. Лунин. Гальваномагнитные свойства полумагнитных полупроводников Hg_{1-x}Mn_xTe_{1-y}Se_y// ЖЭТФ, **112** 5(11), сс.1809-1815 (1997).
- [5] П.Д. Мар'янчук, Е.В. Майструк. Коефіцієнт термоелектричної добротності кристалів Hg_{1-x}Mn_xTe_{1-y}S_y // *Термоелектрика*, **3**, сс. 36-41 (2003).
- [6] P.D. Maryanchuk, E.V. Maistruk, V.D. Tsekhansky, A.I. Bodnar. Magnetic parameters of Hg_{1-x}Mn_xSe_{1-y}S_y and Hg_{1-x}Mn_xTe_{1-y}S_y crystals // *Russian Physics Journal.*, 47(2), pp 183-188 (2004).
- [7] P.D. Maryanchuk, E.V. Maistruk, L.M. Mazur, V.D. Tsekhansky. Magnetic, electric, optic properties and band structure of semimagnetic solid solutions based on mercury chalcogenide // 12th International conference on II-VI compounds, September 12-16, 2005, Warsaw, Poland, P.80.
- [8] P.D. Maryanchuk, E.V. Maistruk, L.M. Dimko. The influence of thermal treatment on the kinetic and magnetic properties of Hg_{1-x}Mn_xTe_{1-y}Se(S)_y // Book of Abstracts: 15th International Conference on Solid Compounds of Transition Elements, 15-20 July 2006, Kraków, Poland, p. 70.
- [9] Pavel D. Maryanchuk, Edward V. Maistruk, Larisa M. Dimko. Nanoscale formations in Hg_{1-x}Mn_xTe_{1-y}Se(S)_y crystals // Book of Abstracts: E-MRS Fall Meeting 2006, September 4th-8th, 2006, Warsaw, Poland, p.143-144.
- [10] Твёрдые растворы в полупроводниковых системах (справочник). Наука, М. 188 с. (1978).
- [11] В.Н. Томашик, В.И. Грыцив. Диаграммы состояния систем на основе полупроводниковых соединений $A^{II}B^{VI}$. Наукова думка, Киев. 168 с. (1982).
- [12] C.C.Y. Kwan, J. Basinski, J.C.Wodley Analysis of Two-Band Hall Effect and Magnetoresistance // Phys. Stat. sol. (B), 48, p. 699 (1971).

P.D. Maryanchuk, E.V. Maistruk

Influence of Thermal Treatment on the Defect Subsystem of Hg_{1-x}Mn_xTe_{1-y}S_y Crystals

Yu.Fedkovych Chernivtsi National University, M. Kocubynsky Street, 2, 58012 Chernivtsi, Ukraine (037)22-4-68-77, <u>emaistruk@list.ru</u>

In temperature interval of 77 - 300 K and in magnetic field range of $H \approx 0.5$ - 6 kOe kinetic coefficients for $Hg_{1-x}Mn_xTe_{1-y}S_y$ ($0 < x \le 0.14$; y = 0.01) crystals have been researched before and after thermal treatment in components vapour. Mechanisms of transformations in defect subsystem of $Hg_{1-x}Mn_xTe_{1-y}S_y$ during annealing of crystals in components vapour have been established.