
ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА  PHYSICS AND CHEMISTRY OF SOLID STATE 
Т. 9, № 2 (2008) С. 312-318 V. 9, № 2 (2008) P. 312-318 

312 

PACS: 71.20.-B, 71.18.+Y ISSN 1729-4428 

G.P. Chuiko, D.M. Stepanchikov 

Geometrical way of determination of effective masses and densities of 
states within generalized Kildal’s model 

Kherson National Technical University, Department of General and Applied Physics, Laboratory of Solid State Theory,  
Beryslawske Shosse, 24, 73008, Kherson, Ukraine, phone: +38(0552)326922,  e-mail: step_75@mail.ru 

A new geometrical approach to the calculation of effective masses of carriers as well as of densities of states 
within generalized Kildal's model presents itself. The computations were conducted for tetragonal phosphides of 
cadmium and zinc (Cd3P2, Zn3P2) both belonging to the spatial group )(/4 15

2 4 h
DnmcP . The transversal and the 

longitudinal effective masses directly associate with semi-axes of the equal energy surfaces. Authors evaluated also 
the effective masses of the density of states and the coefficients of anisotropy. It was shown that the geometrical 
approach allows the determining and the classifying the points of singularities with high reliability. The attained 
results showed that the conductivity bands for both materials are about isotropic, but valence bands are not. The 
density of states for the top of the heavy holes band has the non-zero limit as a specific feature.  

Keywords: Kildal’s model, effective masses, densities of states, anisotropy, V
2

II
3 BA  compounds. 

Стаття поступила до редакції 28.04.2007; прийнята до друку 15.02.2008 

Introduction 

The knowledge about effective masses as well as 
densities of states is considered necessary for both 
predictions and interpretations of the wide complex of 
semiconductors physical properties. However, the 
finding of both above mentioned functions is frequently a 
hardly calculable problem. It is caused mainly by the 
complexity or/and even by the implicit declaration of 
dependencies of a carrier’s energy versus a wave vector. 
For that reason the analytical expressions are often either 
unattainable or too bulky. Even the numerical 
calculations are sometimes too expensive as for the 
expenditures both of computer time and human efforts. 
Conversely, a „roundabout ways” bring success now and 
again, so an example of such „maneuver” became 
accordingly a subject of this paper.  

Kildal’s model [1] is widely used for the describing 
of a lot of the one-axis crystals, in particular for materials 
with common chemical formula V

2
II
3 BA . However, this 

model has been developed for pseudo-cube crystals with 
the symmetry center and not takes into account small 
tetragonal tensions, which are inherent for V

2
II
3 BA  

crystals. That is why the somewhat more general, but 
also the more complicated, version of this model was 
offered in [2].  

A new geometrical approach to the calculation of 
effective masses of carriers as well as of densities of 
states within model [2] is presented here. More exactly, it 

is truthful within simpler variant of [2] for the crystals 
with the symmetry center. A method of the determination 
of the special (Van Hove) points of functions of the 
density of states would here also present itself.   The 
main idea of the approach is based on association of both 
necessary functions with the specific form of Surfaces of 
Equal Energies (named as SEE below) following from 
theory of [2].  

Our computations were conducted for tetragonal 
phosphides of cadmium and zinc (Cd3P2, Zn3P2), 
belonging both to the spatial group )(/4 15

2 4 h
DnmcP . 

Such a choice was grounded on the perspective 
peculiarities of these crystals for optoelectronic purposes. 
Cadmium phosphide, for instance, is well-known 
material for infrared lasers [3] and thereto recently was 
described as an effective quantum amplifier for optical 
fiber-lines [4]. Zinc phosphide is acknowledged as a 
cheap material for high efficiency solar elements, having 
an excellent direct optical gap about 1.51 eV [5,6].   

I. The method of calculations 

The tensor of an inverse dynamical effective mass is 
classically [7] determined itself by some dispersion 
law ( )kε : 
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where ε  is carrier’s energy; αk is a component of the 

wave vector k ; ( ) ( )3,2,1,,, == zyxβα  are 
coordinates indicators. This tensor is symmetrical as for a 
transposition of its indicators and might be reduced to its 
simplest form (i.e. to so-called form within main axes) in 
any extreme point 0k .  Let it be admitted that coordinate 

axes ( )zyx ,,  are directed along the main axes of this 
tensor. In that case the dispersion law may be presented 
in the simple quadratic form [8] nearby to 0k : 

 ( ) ( )
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n n *

q
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ε − ε = ∑0k k  (2) 

where  ,...2,1=n  are energy bands numbers; 
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A condition ( ) ( ) εεε ==− constnn 0kk  
corresponds to the surfaces of equal energies (SEE) of 
second order inside the wave vectors space. The 
expression (2) may be rewritten nearby to the extreme 
point as follows: 
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Therefore effective masses associate themselves with 
semi-axes of a surface of second order (3). This surface 
may be moderately close to the real SEE in the vicinity 
of the band extreme.  Furthermore, if the real dispersion 
law can be expressed in the form (3) then such 
geometrical interpretation of effective masses would be 
proper even within wider interval of energies. 

The dispersion law in framework of model [2] has 
such a form nearby the point k = 0 and with spherical 
coordinates ( )ϕθ ,,k :  

 
2 2 2 2

1 2
2 2 2

3

( ( ) (Pk) (f ( )sin f ( )cos ))

(Pk) f ( )sin 0

Γ ε − ε θ+ ε θ −

ε θ =
 (4) 

Hamiltonian (4) describes a surface of rotation 
around the main crystalline axis. This Hamiltonian is of 
fourth order obviously what is for k  [2].   

On the other hand it might be simplified to the two 
identical surfaces, both of second order, under the 
additional condition: ( ) 03 =εf . Physically this 
condition means the presence of the symmetry center 
into a crystal.  Namely so and is for our materials. 

Let us rewrite the simplified equation (4) with 
Cartesian coordinates and in accordance with the above 
supposition: 
 ( ) ( ) ( ) ( ) 02

22
1

222 =Γ−++ εεε fPkfPkk zyx  (5) 
Certainly, the equation (5) describes a surface of 

second order. It can be rewritten in the form (3) as 
follows: 

 12

2

2

22

=+
+

bs
k

as
kk

z

z

x

yx  (6) 

Here 1±=αs  and it is a factor, which determines 

the sign of item; ( )εa  and ( )εb  are semi-axes of the 
surface. Both are connected with parameters of (5) as 
follows: 
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Polynomials  ( ) ( ) ( )εεε 21 ,, ffΓ  were described in 
[2]: 

( ) ( )( )[ ]22 9/23/3/2)( ηδεεεεεε ∆−∆++∆+−=Γ g

  (8) 
 ( )( ) 22
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 ( ) ( )3/24
2 ∆+= − εεηεf  (10) 

Thereto: ( Pg ,,∆ε ) – are three well-known Kane’s 
parameters (the energy gap, the spin-splitting parameter 
and the matrix element of the impulse); δ - is the known 
parameter of the crystal field; η  - is the scalar factor 
taking into account the deformation of the lattice [2]. 

Comparison of the equations (3) and (6,7) let’s to get 
the expressions for the main components of the tensor of 
effective masses: 
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Whereupon we can also evaluate the effective mass 
of the density of states as well as the coefficient of 
anisotropy: 
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The surface integration on the SEE is usually used 
for the determination of the density of states inside an 
energy band [8]: 

 ( ) ( )( )
∫=≡
ε επε

ε
nS grad

dSsV
d
dNg

kk
38

 (15) 

Where s  is the degeneration index ( 2=s  for 
crystals with the symmetry center); V is the crystal 
volume; ( )εnS  - the SEE. 

Nevertheless, there exists yet the Luttinger’s theorem 
[9]. It connects the volume inside SEE  ( )ετ  with the 
quantity of states )(εN  which contains itself inside 

energy interval [ ]21 ,εε : 

 ( ) ( )
38π
ετε sN =  (16) 

The density of states is evidently the first derivative 
of )(εN : 
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All of our SEE are the surfaces of rotation of a curve 

of second order ( 1// 2222 =+⊥ cskask zzx ) around the 

polar axis zk  [10]. Its direction coincides with the main 
crystal axis. Therefore the internal volume of such SEE 
may be expressed as follows: 
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In formula (18) the equations are written for ellipsoid 

( 1== zx ss ), hyperboloid of one sheet 

( 1;1 −== zx ss ) and hyperboloid of two sheets 

( 1;1 =−= zx ss ) SEE respectively. The limits of 
integration (18) looks as 
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 ( ) ( )mmzm kk θθε cos,=  (20) 
 

where zmk  is the maximal projection of the wave vector 

k  on the polar axis, whereas ( )mk θε ,  is the solution of 

(4) under condition ( ) 03 =εf . The angle mθ  was 
determined in [11]: 
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where 0a  is the lattice parameter in the plane 
perpendicular to the main axis.   

Now there is no problem to get the expressions for 
the densities of states using the equations (17-21) for 
same three distributions of sign factors like to 
expressions (18): 
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Some singularities must be observable for the 
functions (22) at the points, where the velocity of carriers 
tends to zero: 0)( →= kv kεgrad . It follows from 
the integral (15) straight away. Such critical points might 
be of four types: minima ( 0M ), maxima ( 3M ), and two 

kinds of saddle points ( 1M  and 2M ). These singularities 
can be located not only at the center of the Brillouine 
zone but at other symmetrical points [8].   

The geometrical approach allows the determining 
and the classifying of these singularities with the 
reliability. Let it be assumed that ck  is a critical point. 

Since the function ( )kε  might be extended in Taylor’s 
series as a continuous function of its argument 
nearby ck : 
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The linear items were gone from (23) because 
0)( =

= ckkk kεgrad  for the critical point. It is a well 

idea to write the coefficients of series (23) across the 
effective masses. Although because those and these are 
straight associated with second derivatives of the 
function ( )kε  i.e. and between itself as well: 
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Thus the all analysis of type of a critical point is 
merely the tacking into consideration the set of effective 
masses signs: ( ))(),( **

IImsignmsign ⊥ . Such simple 
rules are working here:  
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The digital parameters used in our calculations are 
collected in the table 1. 
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II. Results of computations and their 
discussion 

Dispersion equation (5) has four non-identical 
solutions describing the conductivity band, the heavy 
holes band, the light holes and spin-orbital split band 
respectively (see fig.1). The top of the hh-band is 
selected as the energy counting zero. Two of the three 
valence bands (hh and lh) have the limited width. 

Ellipsoidal SEE describes the conductivity bands of 
both materials. Their coefficients of anisotropy just a bit 
differ from one (see table 2). Therefore both the 
transversal effective mass and the longitudinal effective 
mass are almost one and the same. The ellipsoid of SEE 
differs from a sphere just symbolically. Both materials 
demonstrate the linear energetic dependences (fig.2) for 
effective masses of electrons in addition to above pointed 
out. The exception is only narrow interval of energies 

Table 1. 

Параметр εg, eV ∆, eV P, eV⋅m η δ, eV a0, Å 

Cd3P2 0,53 [3] 0,15 [6] 7,2⋅10-10 [12] 0,99090 [6] 0,02 [13] 8,7537 [14] 

Zn3P2 1,51 [6] 0,11 [6] 7,8⋅10-10 [12] 0,99716 [6] 0,03 [13] 8,0889 [14] 

 
Table 2. 

 c-band hh-band lh-band so-band 

ε0, eV 0,53 0 -0,0138 -0,1591 

0
* / mm⊥  0,0424 -0,0783 -0,1679 -0,1690 

0
*
|| / mm  0,0425 7,1753 -0,0655 -0,1192 

0/ mmd  

0,0425 

(0,048 [11]) 

(0,0455 [15]) 

(0,0475 [18]) 

0,3531 

(0,664 [11]) 

(0,373 [15]) 

(0,51 [19]) 

0,1227 

(0,155 [11]) 

(0,068 [15]) 

(0,13 [18]) 

0,1504 

(0,169 [11]) 

Cd3P2 

ξ  0,9978 0,0109 2,5623 1,4176 

ε0, eV 1,51 0 -0,0178 -0,1221 

0
* / mm⊥  0,0972 -0,1901 -0,4046 -0,3611 

0
*
|| / mm  0,0979 24,1506 -0,1782 -0,2101 

0/ mmd  

0,0974 

(0,2 [5]) 

(0,128 [16]) 

0,9554 

(0,22 [5]) 
0,3079 0,3015 

Zn3P2 

ξ  0,9922 0,0078 2,2706 1,7187 

 

Fig. 1. Energy bands of Cd3P2 (a) and Zn3P2 (b)  
(for θ = π/4). 
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adjoining to the bottom of the c-band. 
The valence bands of the heavy and light holes at 

room temperatures are practically degenerated into the 
bargain to their mentioned limited width. Therefore it is 
possible to converse separately about effective masses 
for each of both bands just at very low temperatures, if to 
overcome the degeneration. It admits below as if that is 
true. There appears the nonlinear dependence of effective 
masses versus energy (fig. 3). The band of heavy holes of 
both materials have SEE with the form of a hyperboloid 
with one sheet. Thus the substantial difference exists 
between the transversal effective mass and the 
longitudinal effective mass. They have even the opposite 
signs and differ itself thereto on the modules roughly on 
two orders near the top of the band. 

Ellipsoidal SEE characterizes the band of the light 
holes. The transversal effective mass exceeds the 
longitudinal mass on the module as for the top of this 
band. Consequently the SEE-ellipsoids are compressed 
there along the polar axis. Conversely, the situation 
changes itself up to the stretched out ellipsoid at 
approaching to the bottom of band. 

Spin-orbital split band also is characterized by 
ellipsoidal SEE which is compressed along the polar 
axis. The coefficient of anisotropy does not exceed 1,8 
and diminishes itself in the depth of the band. The 
conduct of the effective mass in addition is substantially 
nonlinear. 

The magnitudes of the effective masses of electrons 
and holes nearby to the band extremes are collected into 
table 2. There are likewise indicated the energies of 
extremes as well as coefficients of anisotropy and several 
literary data.  

The functions of the density of states for both 
materials and for their conductivity bands are presented 
by fig. 2.  Both has the sole special points ( 0M  type) 
exactly on the bottom of the located at Γ -point band. 
Note that density of the states is much greater for Zn3P2. 
The more or less linear dependences of the densities of 
states are observed inside almost entire interval of 
energies. The exceptions are tiny areas in proximity to 
extremes of the bands.  

The heavy holes valence band distinguishes itself by 
high density of states (fig.4). Their magnitudes exceed 
the same for electrons on about two orders. The top of 
such band is a saddle point of 2M -type. The density of 
states has non-zero limit into this point what was shown 
before just for Cd3As2 in [17]. The additional saddle 
points of 2M -type were found at energies -6.7 meV and 
-8.7 meV for Cd3P2 and Zn3P2 respectively.  

The function of the density of states has the break of 
the second kind at the bottom of this band. It is caused by 
the ultra-narrow forbidden gap between the bands of the 
heavy and the light holes. Nevertheless, the really low 
temperatures are necessary to be talking confidently 
about this gap as well as about the 3M -type maximum 
at the top of the light holes band.  Otherwise both bands 
should be considered as virtually degenerated.   

 

 
Fig. 2. Energy dependences of the effective masses of 
DOS and density of states for conductivity band. 

 

 
Fig. 3. Energy dependences of the effective masses of 
DOS for the light holes band (a) and heavy holes band 
(b). 
 

 
Fig. 4. Density of valence states for the light holes band 
(a) and heavy holes band (b). 
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Conclusions 

1. The proposed geometrical method is simple and 
convenient in relation to the SEE, which are central 
surfaces of second order. Such state of affairs is existed 
either sure as for some well-known models [1] or under 
few additional terms as for others [2].  The method 
allows getting the effective masses and densities of states 
by simple computing procedure with high reliability. 
2. Computer calculations for cadmium and zinc 
phosphides are presented. These results show that both 
conductivity bands are about isotropic, but valence bands 
are not definitely.  
3. The entire list of the special points of the 20 , MM  

and 3M -types with their localization was found as for 
functions of the density of states within model of [2] for 

samples with the symmetry center. 
4. The density of states for the top of the heavy holes 
band has a specific feature: non-zero limit. Similar effect 
was described before for the bottom of the conductivity 
band in Cd3As2 - one of few known materials having the 
inverted band structure like to HgTe or HgSe. These 
features are undoubtedly associated with the virtual 
degeneration of above mentioned bands with the 
indispensable narrow band of the heavy carriers and by 
one and the same reason. 

 
Чуйко Г.П. – доктор фіз.-мат. наук, професор, 
завідувач кафедри загальної та прикладної фізики 
ХНТУ; 
Степанчиков Д.М. – асистент кафедри загальної та 
прикладної фізики ХНТУ, аспірант. 
 

 
 
[1] H. Kildal. Band structure of CdGeAs2 near k = 0. // Phys. Rev., 10(12), pp.5082-5087 (1974). 
[2] G.. Chuiko, N. Don, O. Dvornik, V. Ivchenko. Simple inverted band structure model for cadmium arsenide (Cd3As2). // 

Moldavian Journ. of the Phys. Sciences, 2(1), pp.88-94 (2003). 
[3] K. Sieranski, J. Szatkowski, J. Misiewicz. Semiempirical tight-binding structure of II3V5 semiconductors: Cd3P2, 

Zn3P2, Cd3As2, Zn3As2 // Phys. Rev., 50(11), pp. 7331-7337 (1994). 
[4] A. Kornowski, R. Eichberger, M. Giersig, et al. Preparation and photophysics of strongly luminescing Cd3P2 

quantum dots // Journal of physical chemistry, 100(30), pp.12467-12472 (1996). 
[5] J. Pawlikowski. Adsorption edge of Zn3P2. // Phys. Rev. B, 26(8), pp. 4711-4713 (1982). 
[6] J. Cisowski. Level ordering in II3V2 semiconductor compounds. // Phys. Stat. Sol., 111(1), pp. 289 – 293 (1982). 
[7] O. Маделунг. Теория твёрдого тела. Наука, М. 416 с. (1980). 
[8] А.С. Давыдов. Теория твёрдого тела. Наука, М. 631 с. (1976). 
[9] А.А. Абрикосов. Основы теории металлов. Наука, М. 520 с. (1987). 
[10] G.. Chuiko, O. Dvornik, V. Ivchenko. Generalized dispersion law for 4mm symmetry ordering crystals. // Ukranian 

Physical Journal, 45(10), pp. 1188-1192 (2000). 
[11] Г.П. Чуйко, Н.М. Чуйко, О.В. Дворник. Густини станів та ефективні маси в межах узагальненої моделі 

Кілдал (на прикладі Cd3P2). // Фізика і хімія твердого тіла, 5(1), c. 96-101 (2004). 
[12] Г.П.Чуйко, Н.М.Чуйко. К вопросу о зонной структуре фосфида цинка и арсенида цинка в центре зоны 

Бриллюэна. // ФТП, 15(5), с. 1208−1209 (1981). 
[13] Г.П. Чуйко, О.В. Дворник. Зв’язок поміж кристалічним розщепленням валентних зон та тетрагональною 

деформацією гратки для сполук V
2

II
3 BA . // Фізика і хімія твердого тіла, 3(4), c. 682-686 (2002). 

[14] C. Pistorius, J. Clark, J. Geotzer, et all. High pressure phase relations and crystal structure determination for Zn3P2 
& Cd3P2. // High Press. High Temp., 9(4), pp. 471-482 (1977). 

[15] Г.П.Чуйко. Расчет электронно-энергетического спектра арсенида кадмия, фосфида кадмия и их твердых 
растворов в окрестности центра зоны Бриллюэна. // ФТП, 14(4), с. 629−633 (1980). 

[16] J. Lin-Chung. Energy band structure of Zn3P2 and Cd3P2. // Phys. Stat. Sol. B., 47(1), pp. 33-39 (1971). 
[17] Г.П. Чуйко, И.А. Теплинская. Топологический переход и связанная с ним сингулярность в плотности 

состояний зоны проводимости как характерные свойства инверсного тетрагонального полупроводника – 
арсенида кадмия. // ФТП, 17(6), с. 1123-1125 (1983). 

[18] J.P. Jay-Garin, M.J. Aubin, L.G. Caron. Energy band structure and electron mobility of cadmium phosphide at 
low temperatures // Phys. Rew. B, 18(10), pp. 5675-5684 (1978). 

[19] M.J. Gelten, A.van Lieshout, C.van Es, F.A.P. Blom. Optical properties of Cd3P2  // J. Phys.C, 11, pp. 227-237 
(1978). 

 
 
 



G.P. Chuiko, D.M. Stepanchikov 

 318

Г.П. Чуйко, Д.М. Степанчиков 

Геометричний метод визначення ефективних мас та густин станів 
 в межах узагальненої моделі Кілдал 
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Описано новий геометричний підхід до визначення ефективних мас та густин станів в межах 
узагальненої моделі Кілдал. Метод апробовано для тетрагональних фосфідів кадмію та цинку (Cd3P2, Zn3P2), 
що належать до просторової групи )(/4 15

2 4 h
DnmcP . Поперечні та поздовжні ефективні маси визначалися 

безпосередньо через півосі відповідних ізоенергетичних поверхонь. Також розраховано ефективні маси 
густини станів та коефіцієнти анізотропії. Показано, що запропонований геометричний підхід дозволяє 
надійно визначати та класифікувати сингулярні точки функції густини станів. Отримані результати показали, 
що зона провідності обох матеріалів є майже ізотропною, тоді як валентна зона є суттєво анізотропною. 
Функція густини станів для зони важких дірок має специфічну особливість: ненульову границю у вершині. 


