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A new geometrical approach to the calculation of effective masses of carriers as well as of densities of states
within generalized Kildal's model presents itself. The computations were conducted for tetragonal phosphides of

cadmium and zinc (Cd;P,, Zn;P,) both belonging to the spatial group P4 ,/nme ( D}S ) . The transversal and the

longitudinal effective masses directly associate with semi-axes of the equal energy surfaces. Authors evaluated also
the effective masses of the density of states and the coefficients of anisotropy. It was shown that the geometrical
approach allows the determining and the classifying the points of singularities with high reliability. The attained
results showed that the conductivity bands for both materials are about isotropic, but valence bands are not. The
density of states for the top of the heavy holes band has the non-zero limit as a specific feature.
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Introduction

The knowledge about effective masses as well as
densities of states is considered necessary for both
predictions and interpretations of the wide complex of
semiconductors physical properties. However, the
finding of both above mentioned functions is frequently a
hardly calculable problem. It is caused mainly by the
complexity or/and even by the implicit declaration of
dependencies of a carrier’s energy versus a wave vector.
For that reason the analytical expressions are often either
unattainable or too bulky. Even the numerical
calculations are sometimes too expensive as for the
expenditures both of computer time and human efforts.
Conversely, a ,,roundabout ways” bring success now and
again, so an example of such ,maneuver” became
accordingly a subject of this paper.

Kildal’s model [1] is widely used for the describing
of a lot of the one-axis crystals, in particular for materials
with common chemical formula AYB). However, this

model has been developed for pseudo-cube crystals with
the symmetry center and not takes into account small
tetragonal tensions, which are inherent for AYBY

crystals. That is why the somewhat more general, but
also the more complicated, version of this model was
offered in [2].

A new geometrical approach to the calculation of
effective masses of carriers as well as of densities of
states within model [2] is presented here. More exactly, it
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is truthful within simpler variant of [2] for the crystals
with the symmetry center. A method of the determination
of the special (Van Hove) points of functions of the
density of states would here also present itself.  The
main idea of the approach is based on association of both
necessary functions with the specific form of Surfaces of
Equal Energies (named as SEE below) following from
theory of [2].

Our computations were conducted for tetragonal
phosphides of cadmium and zinc (Cd;P,, Zn;P»),
belonging both to the spatial group P4,/ nme (le).

Such a choice was grounded on the perspective
peculiarities of these crystals for optoelectronic purposes.
Cadmium phosphide, for instance, is well-known
material for infrared lasers [3] and thereto recently was
described as an effective quantum amplifier for optical
fiber-lines [4]. Zinc phosphide is acknowledged as a
cheap material for high efficiency solar elements, having
an excellent direct optical gap about 1.51 eV [5,6].

I. The method of calculations

The tensor of an inverse dynamical effective mass is
classically [7] determined itself by some dispersion

lawg(k):
_ L o’
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where & is carrier’s energy; ka is a component of the

a.f=(x,y,2z)=(1,23)

coordinates indicators. This tensor is symmetrical as for a
transposition of its indicators and might be reduced to its
simplest form (i.e. to so-called form within main axes) in

wave  vectorK ; are

any extreme pointK, . Let it be admitted that coordinate

axes (X, y,Z) are directed along the main axes of this
tensor. In that case the dispersion law may be presented
in the simple quadratic form [8] nearby to K :
n'q,

Z 2m’

o o

e, (k)—¢, (k)
n=12,.
q=k-k,; ma =m
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where are energy bands numbers;

A g, (k)—gn (ko) =const =¢&
corresponds to the surfaces of equal energies (SEE) of
second order inside the wave vectors space. The

expression (2) may be rewritten nearby to the extreme
point as follows:

ne;  Ma,  1qr
2me 2me 2m.e

condition

1

3)

Therefore effective masses associate themselves with
semi-axes of a surface of second order (3). This surface
may be moderately close to the real SEE in the vicinity
of the band extreme. Furthermore, if the real dispersion
law can be expressed in the form (3) then such
geometrical interpretation of effective masses would be
proper even within wider interval of energies.

The dispersion law in framework of model [2] has
such a form nearby the point k = 0 and with spherical

coordinates (k ,0, (/)) :

(T(e) - (Pk)*(f, () sin” O+, (¢) cos” 0))* —

(Pk)*f}(g)sin’ 0=0

Hamiltonian (4) describes a surface of rotation
around the main crystalline axis. This Hamiltonian is of
fourth order obviously what is for k [2].

On the other hand it might be simplified to the two
identical surfaces, both of second order, under the
additional  condition: f (8) =0. this

condition means the presence of the symmetry center
into a crystal. Namely so and is for our materials.

Let us rewrite the simplified equation (4) with
Cartesian coordinates and in accordance with the above
supposition:

(K2 +K2 )P £()+ k2P f(6)-T(e)=0 (5
Certainly, the equation (5) describes a surface of

second order. It can be rewritten in the form (3) as
follows:

“

Physically

k? +ka

2
s.a

k2
s.b’

Here s, = +1 and it is a factor, which determines

1 (©)
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the sign of item; a(g) and b(S) are semi-axes of the
surface. Both are connected with parameters of (5) as

follows:
sa(e)=-LE) (oo T
P fi(e) P f,(¢)
Polynomials F(E), fi (8), 1 (8) were described in
[21:
[(e)= 8(8—gg)[(8+2A/3)(8+5+A/3)—2A2 19n°]

()

®)
fie)=(e+A/3)\e+5+A/3)-A /97> (9
f2(8)=77_48(8+2A/3) (10)

Thereto: (&‘g,A,P ) — are three well-known Kane’s

parameters (the energy gap, the spin-splitting parameter
and the matrix element of the impulse); O - is the known
parameter of the crystal field; 77 - is the scalar factor
taking into account the deformation of the lattice [2].

Comparison of the equations (3) and (6,7) let’s to get
the expressions for the main components of the tensor of
effective masses:

m :L(g) (11)
T 2P%f(e)
. 1T(e) 12

m =———-——
2P f ()
Whereupon we can also evaluate the effective mass

of the density of states as well as the coefficient of
anisotropy:

ol )
m, m, (mJ_) 2P283\/f1 (8)21’2(8)‘ (13)
_|mi| _|fale)
&(e) w76 (14)

The surface integration on the SEE is usually used
for the determination of the density of states inside an

energy band [8]:
sV § dS

gle)=2" -
de 87" 4, |grad,&(k)

Where § is the degeneration index (s =2 for

(15)

crystals with the symmetry center); V is the crystal
volume; S, (6‘) - the SEE.

Nevertheless, there exists yet the Luttinger’s theorem
[9]. It connects the volume inside SEE r(é‘) with the

quantity of states N(&) which contains itself inside
energy interval [81 ,E, ] :

ST\E
L

The density of states is evidently the first derivative

of N(&):

N(g)
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dz(e)

de

N

dN
(8) T ds 8z’

17
e (17)

All of our SEE are the surfaces of rotation of a curve
of second order (k7 /s .a’+k?/s.c’ =1) around the

polar axis kz [10]. Its direction coincides with the main

crystal axis. Therefore the internal volume of such SEE
may be expressed as follows:

4 , |
e le)

27za2(5)k

k.

r= jms(kz )7/ 3

k: 0

In formula (18) the equations are written for ellipsoid

(s, =s,=1), hyperboloid of one sheet

(s, =1;5, =—1) and hyperboloid of two sheets
(s, =—1;s, =1) SEE respectively. The limits of

integration (18) looks as

—-b(¢); (sx =5, = 1)
ky=1-k,; (s,=Ls.=-1) (19)
ek (s, =-Ls. =1)
k., =k(s,6,)cos(8, (20)

where kzm is the maximal projection of the wave vector
K on the polar axis, whereas k (é‘, 0, ) is the solution of
(4) under condition f;(£)=0. The angle 6, was

determined in [11]:

1)

6, = arccos

H(e)-£(e)

where a, is the lattice parameter in the plane
perpendicular to the main axis.

Now there is no problem to get the expressions for
the densities of states using the equations (17-21) for
same three distributions of sign factors like to

expressions (18):
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2 pda,db
3 de de
2
2k, 1+k—z“; ﬁ
3b° )de
a
_J 4 db
g(e)= s db
( ) 2752 a dk kz 4 zmd
| 2 S+ |- S
2 de (b 3b
B, k)b
all3 ™ 3b%)de
n af2db(, K, dk,, (K2,
e Pt | B Pl 8 e
2{ 3 de b de | b

(22)
Some singularities must be observable for the
functions (22) at the points, where the velocity of carriers

tends to zero: v = grad, (k) — 0. It follows from
the integral (15) straight away. Such critical points might
be of four types: minima (M ), maxima (M ), and two

kinds of saddle points (M, and M ,). These singularities

can be located not only at the center of the Brillouine
zone but at other symmetrical points [8].

The geometrical approach allows the determining
and the classifying of these singularities with the

reliability. Let it be assumed that K is a critical point.

Since the function é‘(k) might be extended in Taylor’s
series as a continuous function of its argument

nearbyK _ :

€

n

2

() =¢, (k) +a, (k, -k, ) +a,(k -k, )

: (23)
+ar, (k, =k, ) +...

The linear items were gone from (23) because

gradké‘(k)|k=k = (0 for the critical point. It is a well

idea to write the coefficients of series (23) across the

effective masses. Although because those and these are
straight associated with second derivatives of the

function 8(k) i.e. and between itself as well:
/B I/
2m, 2m,

Thus the all analysis of type of a critical point is

merely the tacking into consideration the set of effective

a. =a, =

X

@,

(24)

masses signs: (sign(m,), Sign(mZ)). Such simple
rules are working here:
() > My; (=) > My
(+-) > M;; (—+) > M,
The digital parameters used in our calculations are
collected in the table 1.

(25)
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Table 1.
ITapamerp &g €V A, eV P,eV-m n S eV ag, A
Cd;P, 0,53 [3] 0,15 [6] 7,2-10"° [12] 0,99090 [6] 0,02 [13] 8,7537 [14]
Zn;P, 1,51 [6] 0,11 [6] 7,8-10"°[12] 0,99716 [6] 0,03 [13] 8,0889 [14]
Table 2.
c-band hh-band Ih-band so-band
€, eV 0,53 0 -0,0138 -0,1591
mi /m, 0,0424 -0,0783 -0,1679 -0,1690
my [ mg 0,0425 7,1753 -0,0655 -0,1192
Cd,P, 0,0425 0,3531 0,1227
/ (0,048 [11]) (0,664 [117) (0,155 [11]) 0,1504
m,/ m
@ (0,0455 [15]) (0,373 [15]) (0,068 [157]) (0,169 [11])
(0,0475 [18]) (0,51 [19]) (0,13 [18])
& 0,9978 0,0109 2,5623 1,4176
€, eV 1,51 0 -0,0178 -0,1221
mi /m, 0,0972 -0,1901 -0,4046 -0,3611
m‘T /m, 0,0979 24,1506 -0,1782 -0,2101
Zn;P
e 0,0974
0,9554
m,/m, (0,2 [5]) 0,3079 0,3015
0,22 [5])
(0,128 [16])
& 0,9922 0,0078 2,2706 1,7187
E, eVl A | 3 1 I HE, eV
. . * % c-band x *x ®x c=band x‘
II. Results of computations and their 0. 7w d | S e (| P
discussion ' T T Tt '
o el nal
Dispersion equation (5) has four non-identical 1.3
solutions describing the conductivity band, the heavy 0 i
holes band, the light holes and spin-orbital split band JUNOIE ol i N M*M““‘“-W
respectively (see fig.1). The top of the hh-band is _0. 2l L, A M-0.1
selected as the energy counting zero. Two of the three e ki
valence bands (hh and lh) have the limited width. _0.4
Ellipsoidal SEE describes the conductivity bands of e b -0.3
both materials. Their coefficients of anisotropy just a bit -8 -4 E? 41 8 -8 -4 0 4 8
differ from one (see table 2). Therefore both the kx10% m” kx10°%, m™*

transversal effective mass and the longitudinal effective
mass are almost one and the same. The ellipsoid of SEE
differs from a sphere just symbolically. Both materials
demonstrate the linear energetic dependences (fig.2) for
effective masses of electrons in addition to above pointed
out. The exception is only narrow interval of energies

Fig. 1. Energy bands of Cd;P, (a) and Zn;P, (b)
(for 6 = n/4).



G.P. Chuiko, D.M. Stepanchikov

adjoining to the bottom of the c-band.

The valence bands of the heavy and light holes at
room temperatures are practically degenerated into the
bargain to their mentioned limited width. Therefore it is
possible to converse separately about effective masses
for each of both bands just at very low temperatures, if to
overcome the degeneration. It admits below as if that is
true. There appears the nonlinear dependence of effective
masses versus energy (fig. 3). The band of heavy holes of
both materials have SEE with the form of a hyperboloid
with one sheet. Thus the substantial difference exists
between the transversal effective mass and the
longitudinal effective mass. They have even the opposite
signs and differ itself thereto on the modules roughly on
two orders near the top of the band.

Ellipsoidal SEE characterizes the band of the light
holes. The transversal effective mass exceeds the
longitudinal mass on the module as for the top of this
band. Consequently the SEE-ellipsoids are compressed
there along the polar axis. Conversely, the situation
changes itself up to the stretched out ellipsoid at
approaching to the bottom of band.

Spin-orbital split band also is characterized by
ellipsoidal SEE which is compressed along the polar
axis. The coefficient of anisotropy does not exceed 1,8
and diminishes itself in the depth of the band. The
conduct of the effective mass in addition is substantially
nonlinear.

The magnitudes of the effective masses of electrons
and holes nearby to the band extremes are collected into
table 2. There are likewise indicated the energies of
extremes as well as coefficients of anisotropy and several
literary data.

The functions of the density of states for both
materials and for their conductivity bands are presented

by fig. 2. Both has the sole special points (M, type)

exactly on the bottom of the located at I"-point band.
Note that density of the states is much greater for Zn;P,.
The more or less linear dependences of the densities of
states are observed inside almost entire interval of
energies. The exceptions are tiny areas in proximity to
extremes of the bands.

The heavy holes valence band distinguishes itself by
high density of states (fig.4). Their magnitudes exceed
the same for electrons on about two orders. The top of
such band is a saddle point of M ,-type. The density of
states has non-zero limit into this point what was shown
before just for Cd;As, in [17]. The additional saddle
points of M , -type were found at energies -6.7 meV and
-8.7 meV for Cd;P, and Zn;P, respectively.

The function of the density of states has the break of
the second kind at the bottom of this band. It is caused by
the ultra-narrow forbidden gap between the bands of the
heavy and the light holes. Nevertheless, the really low
temperatures are necessary to be talking confidently

about this gap as well as about the M , -type maximum

at the top of the light holes band. Otherwise both bands
should be considered as virtually degenerated.
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Fig. 2. Energy dependences of the effective masses of
DOS and density of states for conductivity band.
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Fig. 3. Energy dependences of the effective masses of
DOS for the light holes band (a) and heavy holes band

(b).
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Fig. 4. Density of valence states for the light holes band
(a) and heavy holes band (b).
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Conclusions samples with the symmetry center.
4. The density of states for the top of the heavy holes

band has a specific feature: non-zero limit. Similar effect
was described before for the bottom of the conductivity
band in Cd;As, - one of few known materials having the
inverted band structure like to HgTe or HgSe. These
features are undoubtedly associated with the virtual
degeneration of above mentioned bands with the
indispensable narrow band of the heavy carriers and by
one and the same reason.

1. The proposed geometrical method is simple and
convenient in relation to the SEE, which are central
surfaces of second order. Such state of affairs is existed
either sure as for some well-known models [1] or under
few additional terms as for others [2]. The method
allows getting the effective masses and densities of states
by simple computing procedure with high reliability.

2. Computer calculations for cadmium and zinc
phosphides are presented. These results show that both
conductivity bands are about isotropic, but valence bands
are not definitely.

3. The entire list of the special points of the M, M,

Yyiiko I'.Il. — noxTop ¢i3.-Mar. HayK, mpodecop,
3aBiqyBay Kadeapu 3arajabHol Ta MPUKIaaHOl (Hi3uKU
XHTY;

Cmenanuuxog /].M. — acucteHT Kadeapu 3arajbHoi Ta

and M , -types with their localization was found as for | mpuKmamHoi disuku XHTY, acmipanr.
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I'eomeTpuyHMii MeTOJ BU3HAYEHHS e()eKTUBHMX MAC Ta T'YyCTHH CTAHIB
B MeKax y3arajbHeHol Moaeai Kingan

XepcoHcokutl HayioHanbHULl mexXHiYHUL YHisepcumem, Kageopa 3a2anrbHoi ma npukiaonoi gizuxu,
nabopamopis meopii meepodozo mina, Bepucnascoke uwioce, 24, 73008, Xepcon, Yrpaina,
men: +38(0552)326922, e-mail: step_75@mail.ru

OnucaHO HOBHU TEOMETPHYHMU MigXif J0 BH3HAYCHHS CQPEKTHMBHUX Mac Ta TYCTHH CTaHIB B MeXax
y3aransHeHol mojeni Kinman. Meron anpo6oBaHo s TerparoHaisHuX (ocdiaip kaamito ta uHKy (Cd;P,, Zn;P,),

1[0 HaJeKaTh JI0 MPOCTOPOBOI IPynu P4, / nmc ([)‘5) . [lomepeuHi Ta mMo310BKHI €)EKTHBHI MAaCH BU3HAYAITUCS
4h

Oe3nocepelHbO Yepe3 IBOCI BIANOBIAHUX 130€HEPreTHYHHMX IOBEPXOHb. TakoX po3paxoBaHO e(EKTUBHI Mach
TYCTUHM CTaHiB Ta KoedinieHTn anizotpomii. IToka3aHo, 110 3alpONOHOBAHUH T€OMETPUYHMH MiAXiJ JO3BOJISIE
HaJifHO BM3HAYATH Ta Kilacu(iKyBaTu CUHIYIISAPHI TOukH QyHKIT rycTuHu craniB. OTpuMaHi pe3yabTaTu I0Ka3ay,
10 30Ha MPOBIAHOCTI 000X MaTepianiB € Maibke i30TPOIMHOIO, TOMAI SK BaJCHTHA 30HA € CYTTEBO aHi30TPOIHOIO.
OyHKIIS TYCTHHH CTaHIB IS 30HH BAKKHX JIPOK Ma€ crenudpiuHy 0cOOIMBICTh: HEHYIHOBY TPAaHHUIIIO Y BEPIIUHI.
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